

Integrating Big Geoscience Data into the Petascale National Environmental Research Interoperability Platform (NERDIP):

Successes and Unforeseen challenges

Lesley Wyborn and Ben Evans.

The 2006-2015 Australian Research Funding Schemes

- Two main tranches of funding:
 - National Collaborative Research Infrastructure Strategy (NCRIS)
 - \$542M for 2006-2011 (\$75 M for cyberinfrastructure)
 - Super Science Initiative
 - \$901 million for 2009-2013 (\$347M for cyberinfrastructure)
 - Annual Maintenance funding of around \$180M pa since 2014-2015
- All programmes were designed ensure that Australian research continues to be competitive and rank highly on an international scale.

We went from nothing.....to......

The Research Data Storage Infrastructure

Progress on Data Ingest as of 16 October, 2015: ~43 Petabytes in 8 distributed nodes

eRSA	Intersect	NCI	Pawsey	QCIF(BNE)	VicNode	QCIF(TSV)	TPAC
785	1743	8709	6504	3406	2404	907	1160

Source: https://www.rds.edu.au/

Integrated World-class Scientific Computing Environment at NCI

National Environment Research Data Collections (NERDC)

- 1. Climate/ESS Model Assets and Data Products
- 2. Earth and Marine Observations and Data Products
- 3. Geoscience Collections
- 4. Terrestrial Ecosystems Collections
- 5. Water Management and Hydrology Collections

Data Collections	Approx. Capacity
CMIP5, CORDEX	2 Pbytes
ACCESS products	3.3 Pbytes
LANDSAT, MODIS, VIIRS, AVHRR, INSAR, MERIS	2 Pbytes
Digital Elevation, Bathymetry, Onshore Geophysics	400 Tbytes
Seasonal Climate	600 Tbytes
Bureau of Meteorology Observations	400 Tbytes
Bureau of Meteorology Ocean-Marine	220 Tbytes
Terrestrial Ecosystem	290 Tbytes
Reanalysis products	175 Tbytes

10+ PB of Data for Interdisciplinary Science

Managing 10+ PB of Data for Scalable In-situ Access

- Combined and integrated, the NCI collections are too large to move
 - bandwidth limits the capacity to move them easily
 - the data transfers are too slow, complicated and too expensive
 - even if our data can be moved, few can afford to store 10 PB on spinning disk
- We need to change our focus to:
 - moving users to the data (for sophisticated analysis)
 - moving processing to data
 - having online applications to process the data in-situ
 - Improving the sophistication of users with our help
- We called for a new form of system design where:
 - storage and various types of computation are co-located
 - systems are programmed and operated to allow users to interactively invoke different forms of analysis in-situ over integrated large-scale data collections

Rethinking Hardware Architectures for Data-intensive Science

- Work at NCI has also highlighted the need for balanced systems to enable Data-intensive Science including:
 - Interconnecting processes and high throughput to reduce inefficiencies
 - The need to really care about placement of data resources
 - Better communications between the nodes
 - I/O capability to match the computational power
 - Close coupling of cluster, cloud and storage

NCI's Integrated High Performance Environment

My take is that 'Big Data' is not just about the "V's"

Volume: data at rest

2. Velocity: data in motion (streaming)

3. Variety: many types, forms and structures (or no structures)

4. Veracity: trustworthiness, provenance, lineage, quality

5. Validity: data that is correct

6. Visualization: data in patterns

7. Vulnerability: data at risk

8. Value: data that is meaningful

V??????

10. V?????

'Big Data' vs High Performance Data

- Big Data is a relative term where the volume, velocity and variety of data exceed an organisations storage or compute capacity for accurate and timely decision making
- We define High Performance Data (HPD) as data that is carefully prepared, standardised and structured so that it can be used in Data-Intensive Science on HPC (Evans et al., 2015)
- To get on top of the Data Tsunami, we need to convert 'Big data' collections into HPD by
 - Aggregating data into seamless 'pre-processed' data products
 - Creating hyper-cubes and self describing data arrays

1964: 1KB = 2m of tape or \sim 20 cards

2014: a 4 GB Thumb drive = ~8000 Km of Tape or ~83 million cards

2014: 20 PB of modern storage =
~ 32 trillion metres of tape
~ 320 trillion cards

http://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/big-data-meets-big-data-analytics-105777.pdf

Creating HPD collections: eg the Landsat Cube

- The Landsat cube arranges 636,000 Landsat Source scenes spatially and temporally, to allow flexible but efficient large-scale in-situ analysis
- The data is partitioned into spatially-regular, time-stamped, band-aggregated tiles which are presented as temporal stacks.

Current Landsat Holdings Reformatted as HPD

Water Detection from Space

- 15 Years of data from LS5 & LS7(1998-2012)
- 25m Nominal Pixel Resolution
- Approx. 133,000 individual source scenes in approx. 12,400 passes
- Entire archive of 1,312,087
 ARG25 tiles => 21x10¹²
 pixels can be processed in
 ~8 hours

Data Platforms of today need to scale down to small users

Scaling down to the smaller users

Do we enable individual scenes to be downloaded for locally hosted small scale analysis? Or do we facilitate small scale analysis, in-situ on data sets that are dynamically updated?

Introducing the National Environmental Data Interoperability Research Platform (NERDIP)

NERDIP: Enabling Multiple Ways to Interact with the Data

Infrastructure to Lower Barriers to Entry

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

Ace Users

Data Discovery

Tools Data Portals

National Environmental Research Data Interoperability Platform (NERDIP)

es Layer se data models

st "whole-of-library catalogue

RUF, L

) AP

SW/

VFS VFS

3C WCS

GC WPS

netCD

Data Platform

Data Library

Climate/Weather/Ocean

etCDF-4 EO Libgda

ITS

Airborne Geophysics SEG-Y

LAS LiDAR

aria

HDF5 MPI-enabled

Lustre

HDF5 Serial

Other Storage (options)

NERDIP: Enabling Multiple Ways to Interact with the Data

Infrastructure to Lower Barriers to Entry

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

Ace Users

Data Portals

Tools Data Portals

Services Layer (expose data models & semantics)

Fast "whole-of-library" catalogue

Fast "whole-of-library" catalogue

Fast "whole-of-library" catalogue

Data Platform

netCDF-4
Layer 1 Climate/Weather/Ocear

Libgdal EO Airborne Geophysics

SEG-Y

DAR E

HDF5 MPI-enabled

HDF5 Serial

Lustre

Other Storage (options)

Platforms Free Data from the "Prison of the Portals"

- Portals are for visiting, platforms are for building on
- Portals present aggregated content in a way that invites exploration, but the experience is pre-determined by a set of decisions by the builder about what is necessary, relevant and useful.
- Platforms put design decisions into the hands of users: there are innumerable ways of interacting with the data
- Platforms offer many more opportunities for innovation: new interfaces can be built, new visualisations framed, ultimately new science rapidly emerges

etions/staff-papers/from-portal-to-platform

Tim Sherratt http://www.nla.gov.au/our-publications/staff-papers/from-portal-to-platform

NERDIP: Enabling Ace Users to Interact with the Data

Infrastructure to Lower Barriers to Entry

NERDIP: Enabling Ace Users to Interact with the Data

Infrastructure to Lower Barriers to Entry

NERDIP: Enabling Application Developers to Interact with the Data

Infrastryching Charitas PLICATION OF Charitas

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

FOCUSSED DEVELOPERServ

Tools Data Portals

National Environmental Research Data Interoperability Platform (NERDIP)

Services Layer (expose data models & semantics)

DATA MANAGEMENT

ata 🕽 netCDF-CF

Data Platform

FOCUSSED DEVELOPERS

HDF5 MPI-enabled

HDF5 Serial

Lustre

Other Storage (options)

NERDIP Territorial Wars: Application Developers vs Data Managers

Biodiversity & Cli

ntrastructure to Lower Barriers to Entry

Fortran, C. C++ Upwillon R. Visualisation ANDS/RDA AODN/II D. Catal DISC

Services Lay (expose dat & semantics

Ferret, NCO GDAL, GRASS

FOCUSSED DEVELOPERS

Metadata Layer

Data Library Layer 1

HP Data Library Layer 2 Data Platform

DATA MANAGEMENT FOCUSSED DEVELOPERS

IDF5 Serial

Other Storage (options)

NERDIP: Applications Replicating Ways of Interacting with the Data

NERDIP: Loosely coupling Applications and Data via a Services Layer

Infrastrychire Carriers to Entryhire Systems Lab APPLICATION Claritas

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

FOCUSSED DEVELOPERS

Tools

Data Portals

SERVICES INTERFACE

DATA MANAGEMENT

FOCUSSED DEVELOPERS

HDF5 MPI-enabled

HDF5 Serial

Lustre

Other Storage (options)

NERDIP: Loosely coupling Applications and Data via a Services Layer

Infrastry Pretication Claritas

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

FOCUSSED DEVELOPERS

Tools

Data Portals

National Environmental Research Data Interoperability Platform (NERDIP)

Services Layer (expose data models & semantics)

Direct Access

Fast "whole-of-library" catalogue

RDF, LD

Oper DAP

OGC WMS

OGC WFS

S*M

DATA MANAGEMENT

Data Platform

FOCUSSED DEVELOPERS

NERDIP: the Metadata Layer

Other Storage (options)

Lustre

Layer 2

NERDIP: The Data Layers

Other Storage (options)

Lustre

NERDIP: Infrastructure to Lower Barriers to Entry

Infrastructure to Lower Barriers to Entry

Workflow Engines, Virtual Laboratories (VL's), Science Gateways

Ace Users

Tools **Data Portals**

Data Platform

Data Discovery

ayer 2

NERDIP: Infrastructure to Lower Barriers to Entry

NERDIP: Infrastructure to Lower Barriers to Entry

NERDIP: Enabling Multiple Ways to Interact with the Data

Key Messages on Big Data in the Geosciences

- Data at scales of today have to be built as shared global facilities based around national institutions.
- Domain-neutral international standards for data collections and interoperability are critical for allowing complex interactions in HP environments both within and between HPD collections

https://www.sfwa.org/wp-content/upload 2010/06/iStock_000012734413XSmall.ipg

