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Watershed Delineation

• Watershed Delineation:
•  A starting point of many hydrological analyses.
•  Defining a watershed boundary for the area of interests.

• Why Important?
•  Defining the scope of modeling domain.
•  Impacting further analysis and modeling steps of hydrologic research.



Approaches for Large-Scale Watershed Delineation

• Approaches:
•  Commercial Desktop SWs (e.g. GIS tools).
•  Online Geo-Services (e.g. USGS – StreamStats).
•  Algorithms/Mechanisms from Research Community.

• Limitations:
•  Steep Learning Curve.
•  Requiring Significant Amount of Preprocessing.
•  Scalability and Performance for nation-scale watersheds.
•  Uncertainty of Execution (Watershed Delineation) Time.



Research Goal

• The goals of this research is addressing
1.  The Scalability Problem of public dataset (NHD

+)-based approach (Castronova and Goodall’s 
approach).

2.  The Performance Problem of  very large-scale 
watershed delineations (e.g. the Mississippi) 
using the recent advancement of computing 
technology (e.g. Cloud and MapReduce).

3.  The Predictability Problem of watershed 
delineation using ML (e.g. Local Linear 
Regression).

Mississippi Watershed
(Consisting of approx. 1.1 million+ catchments)



Our Approach

1.  Automated Catchment Search Mechanism Using NHD+.

2.  Performance Improvement for Computing a Large Number of 
Geometric Union:
a.  Data-Reuse
b.  Parallel-Union
c.  MapReduce

3.  LLR (Local Linear Regression)-based Execution Time 
Estimation.



Our Approach

1.  Automated Catchment Search Mechanism Using NHD+.
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Geometric Union:
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è To address the Scalability Problem.

è To address the Performance Problem.

è To address the Predictability Problem.



Design of WDCloud
WDCloud 

Component Description

Web Portal for 
WDCloud

-  Provides UI (Bing Maps) to select 
target watershed coordinates.

-  Displays the final delineation results 
(as well as output files (KML)).

NHD+ Dataset -  Has A single NHD+ DB (SQL Server) by 
integrating 21 district NHD DBs.

Automated 
Catchment Search 

Module
-  Collects relevant catchments in multiple 

NHD regions for the target watershed.

Geometric Union 
Module

-  Performs geometric union operation to 
create the final watershed. 

Execution Time 
Estimator

-  Estimate duration for the given 
watershed delineation via LLR.

Amazon Web 
Services

-  Various compute resources (e.g. VMs) 
and storage resources (e.g Amazon S3) 
for WDCloud.



Automated Catchment Search Module
•  Automatically search and collect all relevant catchments in multiple 

NHD+ regions via HydroSeq, TerminalPath, and DnHydroSeq.

• Output: Set of Catchments that forms the target watershed.



Performance Improvement Strategies

Strategy Description # of Catchme
nts 

# of
VMs 

Domain
Specific Data-Reuse For the “monster-scale” watershed

s (e.g. the Mississippi). 

Multi-HUC
region case.

(approx. 1.1mil+
) 

1 

System
Specific 

Parallel Union Maximize the performance of singl
e VM. < 25K 1 

MapReduce 
Maximize the performance of wate
rshed delineation via Hadoop Clus
ter. 

>= 25K > 1 



Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not 

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed 

delineations.

NHD+ Region “A” NHD+ Region “B+C”
(Pre-computed) 
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Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not 

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed 

delineations.

Target Watershed Only Merging Catchments
in Region “A” (Green Area)

NHD+ Region “A” NHD+ Region “B+C”
(Pre-computed) 



Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not 

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed 

delineations.

Delineation Result  

NHD+ Region “B+C”
(Pre-computed) 

Watershed in
Region “A” 



Performance Improvement – “Parallel-Union”

• Key Idea:
-  Used for medium-size (less than 25K catchments) watersheds.
-  Designed to maximize a multi-core (up to 32 cores) single VM instance.
-  Watershed delineation can be parallelized via “Divide-and-Conquer” or “MapReduce Style” 

computation.

A collection of catchments for
Target Watershed 

Split and Assign to Parallel Tasks 



Performance Improvement – “MapReduce” 

• Key Idea:
-  “Hadoop version” of Parallel-Union.
-  Designed to maximize the performance (minimize the watershed execution time) via utilizing 

multiple numbers of VM instances.
-  Used for large-size (more than 25K catchments) watersheds.

A collection of catchments for
Target Watershed 

Split and Assign to Workers (Mapper) 



Execution Time Estimation – LLR (Local Linear Regression) 
•  Initial Hypothesis:

•  Execution time for watershed delineation has a somewhat linear relationship 
with IaaS/Application (Watershed Delineation Tool) specific parameters (e.g. 
VM Type, # of Catchments)

• Watershed Delineation Tool has several pipeline steps that each 
pipeline step is related to: 

•  Geometric Union (Polygon Processing)
•  Non-Geometric Union

• Data Collection and Correlation Analysis
•  Profiled 26 execution samples on 4 different Types of VMs on AWS.

  # of Catchment Type of VM 

Non Geometric Union 
Geometric Union 

0.0973 (negligible) 

0.6129 (moderate) 

0.7089 (strong) 

0.3223 (weak) 

 Simple Linear Model à Cannot Produce Reliable Prediction 



Execution Time Estimation – LLR (Local Linear Regression) 

# of Catchments 
(a) Global Linear regression on m1.large (using all samples) 

“GLOBAL” LINEAR REGRESSION VS. “LOCAL” LINEAR REGRESSION 

# of Catchments 
(b) Local Linear Regression on m1.large (Using three samples) 

1. Applying kNN to find a 
proper set 𝑽( ​ 𝒙↓𝟎  ) for 
prediction.

2. Creating simple Regression 
model based on 𝑽( ​𝒙↓𝟎 ) 

3. Making prediction for Job ​
𝒙↓𝟎   based on the Regression 
model

•  Procedure of Local Linear Regression 

Samples Prediction
Model •  # of Catchment

•  Geographical Closeness
•  Exec. Environment (VM) 

​𝒙↓𝟎  
error 

​𝒙↓𝟎↑′  

​𝒙↓𝟎  



Evaluation (1) – Performance Improvement

(1) Data-Reuse 
(Monster Watershed)

     

(2) Parallel-Union       
(# of catch. < 25K) 

(3) MapReduce      
(# of catch. >= 25K) 

Comm. 
Desktop 

Data
Reuse 

Speed
Ups 

10+ Hrs 5.5 min. 111x 

4 Core i7
with 8G RAM 

M1.xlarge Instance on AWS
(4 vCPUs with 7.5G Ram) 

Mississippi Watershed 
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MapReduce

4 cores (4 * medium)
8 cores  (4 * large)
16 cores (4 * xlarge)
32 cores (4 * 2xlarge)

11.8	min. 



Evaluation – Execution Time Estimation (Overall)
• Measures 420 random coordinates.

-  (20 random coordinates for watershed outlet * 21 HUC regions in NHD+)
• Metrics:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= {█​​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 /​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  , ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≥ ​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 @​​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 /​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙  , ​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 > ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑   	𝑀𝐴𝑃𝐸= ​1/𝑛 ∑𝑖=1↑𝑛▒|​​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 /​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙,𝑖  | 	

1) Prediction Accuracy 2) MAPE (Mean Absolute Percentage Error)

LLR Estimator (Geo) kNN Mean 
Prediction
Accuracy 85.6% 65.7% 42.8% 

MAPE 0.19 0.93 1.97 

Overall Results for Execution Time Estimation



Evaluation – Execution Time Estimation (Regional)
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Conclusions

• We have designed and implemented WDCloud on top of public 
cloud (AWS) to solve three limitations of existing approaches:

1)  Scalability à Automated Catchment Search Mechanism.
2)  Performance à Three Perf. Improvement Strategies.
3)  Predictability à Local Linear Regression.

• Evaluations of WDCloud on AWS:
•  Performance Improvement

- 4x ~ 111x speed up (Parallel Union, MapReduce, Data Reuse)
•  Prediction Accuracy

- 85.6% of prediction accuracy and 0.19 of MAPE.



Questions?

Thank you!



Support Slides (NHD+ Regions) 


