WDCloud: An End to End System for Large-Scale Watershed Delineation on Cloud

*In Kee Kim, *Jacob Steele, +Anthony Castronova, *Jonathan Goodall, and *Marty Humphrey

> *University of Virginia +Utah State University

Watershed Delineation

Watershed Delineation:

- A starting point of many hydrological analyses.
- Defining a watershed boundary for the area of interests.

• Why Important?

- Defining the scope of modeling domain.
- Impacting further analysis and modeling steps of hydrologic research.

Approaches for Large-Scale Watershed Delineation

• Approaches:

- Commercial Desktop SWs (e.g. GIS tools).
- Online Geo-Services (e.g. USGS StreamStats).
- Algorithms/Mechanisms from Research Community.

Limitations:

- Steep Learning Curve.
- Requiring Significant Amount of Preprocessing.
- Scalability and Performance for nation-scale watersheds.
- Uncertainty of Execution (Watershed Delineation) Time.

Research Goal

Mississippi Watershed (Consisting of approx. 1.1 million+ catchments)

- The goals of this research is addressing
 - The <u>Scalability Problem</u> of public dataset (NHD +)-based approach (Castronova and Goodall's approach).
 - 2. The <u>Performance Problem</u> of very large-scale watershed delineations (e.g. the Mississippi) using the recent advancement of computing technology (e.g. Cloud and MapReduce).
 - 3. The <u>Predictability Problem</u> of watershed delineation using ML (e.g. Local Linear Regression).

Our Approach

- 1. Automated Catchment Search Mechanism Using NHD+.
- 2. Performance Improvement for Computing a Large Number of Geometric Union:
 - a. Data-Reuse
 - b. Parallel-Union
 - c. MapReduce
- 3. LLR (Local Linear Regression)-based Execution Time Estimation.

Our Approach

1. Automated Catchment Search Mechanism Using NHD+.

→ To address the Scalability Problem.

- 2. Performance Improvement for Computing a Large Number of Geometric Union:
 - a. Data-Reuse
 - b. Parallel-Union -> To address the Performance Problem.
 - c. MapReduce
- 3. LLR (Local Linear Regression)-based Execution Time Estimation.
 - → <u>To address the Predictability Problem.</u>

Design of WDCloud

Automated Catchment Search Module

 Automatically search and collect all relevant catchments in multiple NHD+ regions via *HydroSeq*, *TerminalPath*, and *DnHydroSeq*.

```
Algorithm 1 Automated Catchment Search for Multiple Regions in NHD+
```

```
Require: coord: coordinate for outlet of the target watershed
```

```
1: start_HUC\_region \leftarrow get\_regional\_dataset (coord)
```

```
2: terminal_paths \leftarrow get\_terminal\_path\_infos (start\_HUC\_region, coord)
```

```
3: catchments \leftarrow get\_catchments (start\_HUC\_region, terminal\_paths)
```

- 4:
- 5: $multi_region_hydroseqs \leftarrow get_multi_region_hydroseqs_info (start_HUC_region, terminal_paths)$

```
6: if length(multi\_region\_hydroseqs) > 0 then
```

7: $related_HUC_regions \leftarrow find_related_HUC_regions (multi_region_hydroseqs)$

```
8: region\_index \leftarrow 0
```

- 9: while region_index < legnth(related_HUC_regions) do
- 10: $catchment_for_HUC_region \leftarrow get_catchments (related_HUC_regions[region_index], terminal_paths)$
- 11: *catchments*.append(*catchment_for_HUC_region*)
- 12: $region_index++$
- 13: end while
- 14: end if

• Output: Set of Catchments that forms the target watershed.

Performance Improvement Strategies

	Strategy	Description	# of Catchme nts	# of VMs
Domain Specific	Data-Reuse	For the "monster-scale" watershed s (e.g. the Mississippi).	Multi-HUC region case. (approx. 1.1mil+)	1
System Specific	Parallel Union	Maximize the performance of singl e VM.	< 25K	1
	MapReduce	Maximize the performance of wate rshed delineation via Hadoop Clus ter.	>= 25K	> 1

- Pre-compute catchment unions for Monster-scale Watersheds. (not using a specific point for outlet).
- Offline optimization to guarantee the performance of watershed delineations.

- Pre-compute catchment unions for Monster-scale Watersheds. (not using a specific point for outlet).
- Offline optimization to guarantee the performance of watershed delineations.

- Pre-compute catchment unions for Monster-scale Watersheds. (not using a specific point for outlet).
- Offline optimization to guarantee the performance of watershed delineations.

- Pre-compute catchment unions for Monster-scale Watersheds. (not using a specific point for outlet).
- Offline optimization to guarantee the performance of watershed delineations.

Performance Improvement – "Parallel-Union"

- Used for medium-size (less than 25K catchments) watersheds.
- Designed to maximize a multi-core (up to 32 cores) single VM instance.
- Watershed delineation can be parallelized via "Divide-and-Conquer" or "MapReduce Style" computation.

Performance Improvement – "MapReduce"

- "Hadoop version" of Parallel-Union.
- Designed to maximize the performance (minimize the watershed execution time) via utilizing multiple numbers of VM instances.
- Used for large-size (more than 25K catchments) watersheds.

Execution Time Estimation – LLR (Local Linear Regression)

• Initial Hypothesis:

- Execution time for watershed delineation has a <u>somewhat linear relationship</u> <u>with laaS/Application (Watershed Delineation Tool) specific parameters</u> (e.g. VM Type, # of Catchments)
- <u>Watershed Delineation Tool</u> has several pipeline steps that each pipeline step is related to:
 - Geometric Union (Polygon Processing)
 - Non-Geometric Union

Data Collection and Correlation Analysis

• Profiled 26 execution samples on 4 different Types of VMs on AWS.

	# of Catchment	Type of VM
Non Geometric Union	0.0973 (negligible)	0.7089 (strong)
Geometric Union	0.6129 (moderate)	0.3223 (weak)

Simple Linear Model → <u>Cannot Produce Reliable Prediction</u>

Execution Time Estimation – LLR (Local Linear Regression)

(a) Global Linear regression on m1.large (using all samples)

(b) Local Linear Regression on m1.large (Using three samples)

Procedure of Local Linear Regression

Exec. Environment (VM)

Evaluation (1) – Performance Improvement

(1) Data-Reuse (Monster Watershed)

Mississippi Watershed Data Comm. Speed Ups Desktop Reuse 10+ Hrs 5.5 min. 111x 4 Core i7 with 8G RAM M1.xlarge Instance on AWS (4 vCPUs with 7.5G Ram)

(2) Parallel-Union (# of catch. < 25K)

Evaluation – Execution Time Estimation (Overall)

- Measures 420 random coordinates.
 - (20 random coordinates for watershed outlet * 21 HUC regions in NHD+)
- Metrics:
 - 1) Prediction Accuracy

2) MAPE (Mean Absolute Percentage Error)

 $Prediction \ Accuracy = \{ \blacksquare T \downarrow actual \ / T \downarrow predicted \ , T \downarrow predicted \ge T \downarrow actual \ @T \downarrow predicted \ / T \downarrow actual \ , T \downarrow actual > T \downarrow actual \) T \downarrow actual \ , T \downarrow predicted \ , T \downarrow predicted \) T \downarrow actual \) T \downarrow actual$

Overall Results for Execution Time Estimation

	LLR Estimator	(Geo) <i>k</i> NN	Mean
Prediction Accuracy	85.6%	65.7%	42.8%
MAPE	0.19	0.93	1.97

Evaluation – Execution Time Estimation (Regional)

Conclusions

- We have designed and implemented *WDCloud* on top of public cloud (AWS) to solve three limitations of existing approaches:
 - 1) Scalability

- → Automated Catchment Search Mechanism.
- 2) Performance
- 3) Predictability

- → Three Perf. Improvement Strategies.
- → Local Linear Regression.

• Evaluations of *WDCloud* on AWS:

- Performance Improvement
 - 4x ~ 111x speed up (Parallel Union, MapReduce, Data Reuse)
- Prediction Accuracy
 - 85.6% of prediction accuracy and 0.19 of MAPE.

Thank you!

Support Slides (NHD+ Regions)

