
WDCloud: An End to End System for Large-
Scale Watershed Delineation on Cloud

*In Kee Kim, *Jacob Steele, +Anthony Castronova,
*Jonathan Goodall, and *Marty Humphrey

*University of Virginia
+Utah State University

Watershed Delineation

• Watershed Delineation:
•  A starting point of many hydrological analyses.
•  Defining a watershed boundary for the area of interests.

• Why Important?
•  Defining the scope of modeling domain.
•  Impacting further analysis and modeling steps of hydrologic research.

Approaches for Large-Scale Watershed Delineation

• Approaches:
•  Commercial Desktop SWs (e.g. GIS tools).
•  Online Geo-Services (e.g. USGS – StreamStats).
•  Algorithms/Mechanisms from Research Community.

• Limitations:
•  Steep Learning Curve.
•  Requiring Significant Amount of Preprocessing.
•  Scalability and Performance for nation-scale watersheds.
•  Uncertainty of Execution (Watershed Delineation) Time.

Research Goal

• The goals of this research is addressing
1.  The Scalability Problem of public dataset (NHD

+)-based approach (Castronova and Goodall’s
approach).

2.  The Performance Problem of very large-scale
watershed delineations (e.g. the Mississippi)
using the recent advancement of computing
technology (e.g. Cloud and MapReduce).

3.  The Predictability Problem of watershed
delineation using ML (e.g. Local Linear
Regression).

Mississippi Watershed
(Consisting of approx. 1.1 million+ catchments)

Our Approach

1.  Automated Catchment Search Mechanism Using NHD+.

2.  Performance Improvement for Computing a Large Number of
Geometric Union:
a.  Data-Reuse
b.  Parallel-Union
c.  MapReduce

3.  LLR (Local Linear Regression)-based Execution Time
Estimation.

Our Approach

1.  Automated Catchment Search Mechanism Using NHD+.

2.  Performance Improvement for Computing a Large Number of
Geometric Union:
a.  Data-Reuse
b.  Parallel-Union
c.  MapReduce

3.  LLR (Local Linear Regression)-based Execution Time
Estimation.

è To address the Scalability Problem.

è To address the Performance Problem.

è To address the Predictability Problem.

Design of WDCloud
WDCloud

Component Description

Web Portal for
WDCloud

-  Provides UI (Bing Maps) to select
target watershed coordinates.

-  Displays the final delineation results
(as well as output files (KML)).

NHD+ Dataset -  Has A single NHD+ DB (SQL Server) by
integrating 21 district NHD DBs.

Automated
Catchment Search

Module
-  Collects relevant catchments in multiple

NHD regions for the target watershed.

Geometric Union
Module

-  Performs geometric union operation to
create the final watershed.

Execution Time
Estimator

-  Estimate duration for the given
watershed delineation via LLR.

Amazon Web
Services

-  Various compute resources (e.g. VMs)
and storage resources (e.g Amazon S3)
for WDCloud.

Automated Catchment Search Module
•  Automatically search and collect all relevant catchments in multiple

NHD+ regions via HydroSeq, TerminalPath, and DnHydroSeq.

• Output: Set of Catchments that forms the target watershed.

Performance Improvement Strategies

Strategy Description # of Catchme
nts

of
VMs

Domain
Specific Data-Reuse For the “monster-scale” watershed

s (e.g. the Mississippi).

Multi-HUC
region case.

(approx. 1.1mil+
)

1

System
Specific

Parallel Union Maximize the performance of singl
e VM. < 25K 1

MapReduce
Maximize the performance of wate
rshed delineation via Hadoop Clus
ter.

>= 25K > 1

Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed

delineations.

NHD+ Region “A” NHD+ Region “B+C”
(Pre-computed)

Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed

delineations.

NHD+ Region “A” NHD+ Region “B+C”
(Pre-computed)

Outlet (User Input) Water Flow

Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed

delineations.

Target Watershed Only Merging Catchments
in Region “A” (Green Area)

NHD+ Region “A” NHD+ Region “B+C”
(Pre-computed)

Performance Improvement – “Data-Reuse”

• Key Idea:
-  Pre-compute catchment unions for Monster-scale Watersheds. (not

using a specific point for outlet).
-  Offline optimization to guarantee the performance of watershed

delineations.

Delineation Result

NHD+ Region “B+C”
(Pre-computed)

Watershed in
Region “A”

Performance Improvement – “Parallel-Union”

• Key Idea:
-  Used for medium-size (less than 25K catchments) watersheds.
-  Designed to maximize a multi-core (up to 32 cores) single VM instance.
-  Watershed delineation can be parallelized via “Divide-and-Conquer” or “MapReduce Style”

computation.

A collection of catchments for
Target Watershed

Split and Assign to Parallel Tasks

Performance Improvement – “MapReduce”

• Key Idea:
-  “Hadoop version” of Parallel-Union.
-  Designed to maximize the performance (minimize the watershed execution time) via utilizing

multiple numbers of VM instances.
-  Used for large-size (more than 25K catchments) watersheds.

A collection of catchments for
Target Watershed

Split and Assign to Workers (Mapper)

Execution Time Estimation – LLR (Local Linear Regression)
•  Initial Hypothesis:

•  Execution time for watershed delineation has a somewhat linear relationship
with IaaS/Application (Watershed Delineation Tool) specific parameters (e.g.
VM Type, # of Catchments)

• Watershed Delineation Tool has several pipeline steps that each
pipeline step is related to:

•  Geometric Union (Polygon Processing)
•  Non-Geometric Union

• Data Collection and Correlation Analysis
•  Profiled 26 execution samples on 4 different Types of VMs on AWS.

 # of Catchment Type of VM

Non Geometric Union
Geometric Union

0.0973 (negligible)

0.6129 (moderate)

0.7089 (strong)

0.3223 (weak)

 Simple Linear Model à Cannot Produce Reliable Prediction

Execution Time Estimation – LLR (Local Linear Regression)

of Catchments
(a) Global Linear regression on m1.large (using all samples)

“GLOBAL” LINEAR REGRESSION VS. “LOCAL” LINEAR REGRESSION

of Catchments
(b) Local Linear Regression on m1.large (Using three samples)

1. Applying kNN to find a
proper set 𝑽(​ 𝒙↓𝟎 ) for
prediction.

2. Creating simple Regression
model based on 𝑽(​𝒙↓𝟎 )

3. Making prediction for Job ​
𝒙↓𝟎  based on the Regression
model

•  Procedure of Local Linear Regression

Samples Prediction
Model •  # of Catchment

•  Geographical Closeness
•  Exec. Environment (VM)

​𝒙↓𝟎 
error

​𝒙↓𝟎↑′ 

​𝒙↓𝟎 

Evaluation (1) – Performance Improvement

(1) Data-Reuse
(Monster Watershed)

(2) Parallel-Union
(# of catch. < 25K)

(3) MapReduce
(# of catch. >= 25K)

Comm.
Desktop

Data
Reuse

Speed
Ups

10+ Hrs 5.5 min. 111x

4 Core i7
with 8G RAM

M1.xlarge Instance on AWS
(4 vCPUs with 7.5G Ram)

Mississippi Watershed

0.0

0.3

0.5

0.8

1.0

1 2 4 8 16 32

N
or

m
. E

xe
cu

tio
n

Ti
m

e

of Parallel Tasks

Norm. xLarge (4 cores)

VA (430 Catch.)
TN (23K Catch.)
SC (155 Catch.)
PA (140 Catch.)
Average

3.9x	speedup	
(≈	310	sec.)

≈	1200	sec.

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

[VALUE]
x

0

5

10

15

20

25

ME (66K) KY (107K) SD (253K)

Sp
ee

d-
U

p
(B

as
el

in
e:

 N
on

-p
ar

al
le

l)

Large-Scale Watersheds (# of
Catchment

MapReduce

4 cores (4 * medium)
8 cores (4 * large)
16 cores (4 * xlarge)
32 cores (4 * 2xlarge)

11.8	min.

Evaluation – Execution Time Estimation (Overall)
• Measures 420 random coordinates.

-  (20 random coordinates for watershed outlet * 21 HUC regions in NHD+)
• Metrics:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= {█​​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 /​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  , ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≥ ​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 @​​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 /​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙  , ​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙 > ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑   	𝑀𝐴𝑃𝐸= ​1/𝑛 ∑𝑖=1↑𝑛▒|​​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − ​𝑇↓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 /​𝑇↓𝑎𝑐𝑡𝑢𝑎𝑙,𝑖  | 	

1) Prediction Accuracy 2) MAPE (Mean Absolute Percentage Error)

LLR Estimator (Geo) kNN Mean
Prediction
Accuracy 85.6% 65.7% 42.8%

MAPE 0.19 0.93 1.97

Overall Results for Execution Time Estimation

Evaluation – Execution Time Estimation (Regional)

0%
20%
40%
60%
80%

100%
Prediction Accuracy LLR Predictor kNN mean

0.00
0.20
0.40
0.60
0.80
1.00 MAPE LLR Predictor kNN mean

80%

0.2

Conclusions

• We have designed and implemented WDCloud on top of public
cloud (AWS) to solve three limitations of existing approaches:

1)  Scalability à Automated Catchment Search Mechanism.
2)  Performance à Three Perf. Improvement Strategies.
3)  Predictability à Local Linear Regression.

• Evaluations of WDCloud on AWS:
•  Performance Improvement

- 4x ~ 111x speed up (Parallel Union, MapReduce, Data Reuse)
•  Prediction Accuracy

- 85.6% of prediction accuracy and 0.19 of MAPE.

Questions?

Thank you!

Support Slides (NHD+ Regions)

