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Abstract—Array Databases close a gap in the database 

ecosystem by adding modeling, storage, and processing 

support on multi-dimensional arrays. Declarative queries 

provide processing of arrays of regularly massive size, such as 

Tera- to Petabyte datacubes, while allowing internal degrees 

of freedom in partitioning the large arrays into tractable sub-

arrays. Among the important new operations is the array 

Theta-Join, such as overlaying two images. Evaluation of such 

joins is complicated by the fact that the participating arrays 

likely do not align in their partitioning schemes. This can lead 

to inefficient multiple reads of sub-arrays. 

We introduce array joins and present an efficient way of 

pairing corresponding sub-arrays. As a byproduct, this 

technique delivers information on optimal data placement for 

parallel join evaluation. The method is implemented in the 

Array DBMS rasdaman which is in operational use at data 

centers and mapping agencies. 

Array database; scientific database; join; rasdaman 

I. INTRODUCTION 

In the era of NoSQL and NewSQL databases, multi-di-
mensional arrays meantime are accepted as an additional 
data category that needs to be supported by databases, next 
to sets, trees, and graphs. For the representation of sensor, 
image, simulation output, and statistics data they arguably 
comprise the larger part of today’s Big Data in virtually all 
science and engineering application domains and beyond. 
Examples in the Earth Sciences include 2-D satellite image 
maps, 3-D x/y/t image timeseries and x/y/z geological voxel 
models, as well a as four-dimensional x/y/z/t weather fore-
cast datacubes. In the Life Sciences we find microarray data, 
gene expression data, as well as a variety of image modal-
ities like CAT scans. In the Astro Sciences we encounter 
large-scale cosmological simulations as well as optical and 
radio telescope observations. 

In query processing, arrays behave quite differently from 
traditional tuples. While in classical relational systems 
tuples are well below database page size, single array 
objects easily exceed today’s server RAM, such as 4-D 
climate simulation data cubes with dozens of Terabytes. 
Hence, partitioning schemes have been introduced which 
allow to optimize subsetting and to process arrays piece-
wise, such as tiling [3] [12] and chunking [19]. 

The most important requirement on any partitioning 
scheme is to preserve the spatial proximity on array cells 
induced by the well-defined Euclidean neighborhood of 

cells. This is a decisive factor for array query performance 
as array disk access patterns almost always are a function of 
this neighborhood. In plain words, when a particular cell is 
accessed it is extremely likely that its neighbor pixels will 
get accessed, too. 

Aside from this spatial clustering of array cells there is a 
wide open space for partitioning strategies; a systematic 
study has been conducted by Paula Furtado [12]. A good 
partitioning strategy will minimize the number of disk 
accesses and the amount of data to be read from disk for 
some given access pattern induced by the query workload 
under consideration. Ideally, a query can be answered with 
just one disk access. In practice, though, access patterns 
may conflict.  

Consider for example, a satellite image timeseries stored 
as a 3-D x/y/t array (Figure 1. ). One common access pattern 
is to extract time slices, such as “sea surface temperature in 
the Tyrrhenian Sea at timestamp 2002-04-12T12:36” 
(Figure 1.  top right). This pattern is best supported by the 
classical storage in data centers where each incoming image 
is stored as a, say, GeoTIFF image. Another common 
pattern gaining much importance in particular for environ-
mental monitoring is “sea surface temperature at position 
x/y” (Figure 1.  bottom right). Such kind of queries obvious-
ly are best accommodated by a partitioning that stretches 
along the time dimension while narrow (in the extreme case: 
1x1 pixel) horizontally. Figure 2.  shows an early experi-
mental interface to these data (left) and a modern portal on a 
130+ TB database hosted by the European Space Agency 
[5] (right), all using rasdaman. 

However, there is no single optimal partitioning, rather 
solutions have to be determined relative to a given work-
load. Even a single workload may contain patterns suggest-
ing conflicting partitionings, in which case a tradeoff has to 
be found. Figure 3.  shows some partitionings which are 
meant to outline the wide range of possible options. Some-
times these may even be non-disjoint and overlapping [21]. 

  

 

 
Figure 1.  Satellite image timeseries: 3-D extract (left), schematic spatial 

and temporal datacube subsetting (center), x/y and t cutouts (right); 

source: rasdaman screenshot, data courtesy DLR-DFD 
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Figure 2.  Portal interface for spatio-temporal data selection and 

processing: early experimental portal by DLR-DFD (left) and recent ESA 
portal done by MEEO s.r.l. 

 
Figure 3.  Sample partitioning strategies [12]. 

Among the various operations an array query language 
has to offer (see [16] for operators under consideration for 
the forthcoming ISO SQL array extension) there is the array 
join which combines two arrays through some operation. 
Unlike the relational join where a join predicate (such as 
R.a=S.b) determines the tuples retained from the cross 
product of the operand sets, an array join retains the cells of 
all locations the arrays share and performs some operation 
on each matching cell pair. Practical applications are 
manifold, such as overlaying two images, computing the 
vegetation index from red and infrared bands, etc.  

For example, in Figure 4.  a standard situation in Web 
mapping is shown. The conceptual model consists of 2D 
image layers stacked on top of each other, each one derived 
from a base map. The server generates the layers, overlays 
them, and delivers a single RGB image to the client1. In the 
map overlay on hand, the stack consists of the following 
layers, from top to bottom: 

 an elevation layer coded in red, yellow, green, and 

transparent to highlight areas endangered by floods. 

 two so-called “thematic maps” for water lines and 

water areas, respectively, stored as bit masks which 

get colored on the fly in two distinct shades of blue.  

 at the bottom, a grayscale airborne image. 

Image, thematic, and elevation data are obtained from 
different sources with individual spatial resolution and are 
scaled to the output resolution before overlaying. 

 

 
Figure 4.  Map generated from four base layers; source: rasdaman 

screenshot; data courtesy Zwickau municipality, Germany. 

                                                           
1  Alternatively, clients may assemble the layers into the final 

image, but our discussion focuses on server-side processing – in 

particular, as in this server-side approach substantially less data 

have to be transferred to the client. 

This is the simplest case; more complex combinations of 
arrays – such as matrix multiplications and other Linear Al-
gebra – are conceivable and practically meaningful; how-
ever, we claim that the basic problem remains the same: 
pairwise combining cells form the input arrays based on 
their matching positions. Hence, the problem might be 
translated into relational algebra as a join on the coordinates, 
as we will discuss lateron. In practice, the partitioning 
supports joins by naturally providing a spatial access 
method respecting spatial clustering. 

During evaluation of array joins under partitioning the 
engine loads matching partitions from disk as input to the 
combination function (such as the overlay above). This is 
straightforward in case both arrays share the same under-
lying partitioning scheme. In general, however, the patterns 
will differ, for reasons of different spatial resolution, 
optimization of each array for different access patterns, etc. 
Treatment of partially overlapping partitions obviously 
makes it difficult to retain the optimal situation where each 
partition is loaded only once, unless we assume that all 
partitions can be loaded into the engine’s main memory, 
which is unrealistic in view of today’s “Big Data”. 

In this paper we introduce a technique which, based on 
an arbitrary partitioning of the operand arrays in a join, 
guarantee a minimal number of multiple reads for the 
partitions involved. We show that the remaining multiple 
reads can be determined in advance, and that the algorithm 
is optimal in that the remaining excessive reads cannot be 
avoided. The resulting scheduling algorithm for array join 
evaluation additionally yields a distribution criterion for join 
parallelization under a shared-nothing regime. The remaind-
er of this contribution is organized as follows. In the next 
Section, we briefly introduce array management in data-
bases, as far as necessary for our discussion. Section 3 
discusses related work. Our array join evaluation method is 
presented in Section 4, which undergoes a complexity 
analysis in Section 5. Optimization opportunities are 
assessed in Section 6, followed by an evaluation in Section 
7. Finally, Section 8 concludes the paper. 

II. ARRAYS IN DATABASES 

This section gives a sketchy description of array 
modeling and querying, sufficient for the purpose of this 
paper. While the concepts discussed in this paper are 
universal and independent from a particular array model or 
language we will use the notation of the ISO Array SQL 
standard under development [15], which is implemented in 
the the rasdaman (“raster data manager”) Array DBMS. In 
addition to the relevance this language has it is backed by a 
thorough algebraic formalization suitable for describing 
queries, optimization, and storage mapping, Array Algebra 
[6], which is a prerequisite for the array join formalization 
we undertake. A comprehensive introduction to array 
queries can be found in [18]; a comparison of different array 
models has been published in [4] and [9]. 

A. Array Modelling and Querying 

Formally, a d-dimensional array is a function a: D  V 
where the domain consists of the d-fold cross product of 
closed integer intervals: 



D = {lo1, …, hi1}  …  {lod, …, hid} with loi≤hii for 1≤i≤d 
V is some non-empty value set, also called the array’s 

cell type. Single elements in such an array we call cells. 
In terms of operations on arrays, we rely on Array Al-

gebra [6], a minimal formal framework of well understood 
expressiveness. An array constructor, marray, and an 
aggregator called condenser form the two core operations. 

The marray operator creates an array of a given extent 
and assigns values to each cell through some expression 
which may contain occurrences of the cell’s coordinate. An 

example of a unary marray operation is deriving the 
logarithm of some input array of given domain extent D: 

marray x in D 

values log( a[x] ) 

An example for a binary operator is addition of two 
images: 

marray x in D 

values a[x] + b[x] 

In fact, any binary operation defined on the input arrays’ 
cell types this way “induce” corresponding array operations. 
We require that both operand arrays share the same spatial 
extent so that the pairwise matching of array cells is defined. 

Syntactically, we abbreviate such marray operations to the 
simpler form of 

a+b 

This is the kind of operations which introduce array 
joins, and we will focus on these in the sequel. 

Another operation we will need later is array concatenat-
ion. For arrays a with domain A and b with B we define 

a concat b := marray x in A  B 

              values if x A then a[x] 

                            else b[x] 

Obviously, the direct sum of the input domains must be 
a valid array domain again. (Again, overlapping techniques 
[21] have no impact on this discussion – by definition they 
only replicate values, so that the value for each array 
coordinate remains unambiguously defined.) As an 
example, consider array a with extent [-10:5,-2:2] and b 
with extent [6:10,-2:2]. The resulting domain extent is [-
10:10,-2:2] as Figure 5.  shows. 

It is straightforward to extend concatenation to an n-ary 
function provided the input array domains altogether form a 
valid array partition (see later for a formal definition). 

Only for completeness we briefly mention condensers 
which act similar to SQL aggregates by iterating over an 
array and consolidating all values into a single result scalar.  

The condensing operation is mentioned explicitly, 
together with some preprocessing expression which again 
may contain occurrences of the coordinates visited: 

 

 

Figure 5.  Concatenation of two arrays (color code as in Section 4) 

condense + 

over     x in D 

using    A[x] 

which this case can be abbreviated to add_cells(A). 
In passing we note that array operations, being 2

nd
 order 

with functions as parameters, introduce functionals. 
Following ISO SQL we embed arrays into the relational 

model as a new column type; this approach is shared by the 
majority of systems. This offers several practical advantag-
es, such as a clear separation of concerns in query optimizat-
ion and evaluation which eases mixed optimization [17]. 
Assuming tables R and S each containing an array-valued 
attribute A and B, respectively, we can retrieve a result array 

set containing the θ-combination of both arrays by writing 
select R.A θ S.B 

from   R, S 

During evaluation the set (i.e., relational) engine first 
establishes the cross product of R.A and S.B as usual lead-
ing, after projection, to a set of pairs (R.A,S.B). Each pair are 
then is forwarded to the array engine as input operands for 
the array expression. The array engine responds with a 
single output array for each input pair which the set engine 
recombines into the final list of result arrays. 

This approach has the attractive property that the set 
mechanics as such remains unaffected (see Figure 6. ), the 
novel part is on micro-level where the concrete input array 
instances are already provided by the set engine and the 
result is computed from those. As such, array-valued attrib-
utes can be rather massive as compared to the small (i.e., be-
low page size) alphanumeric attribute values their pro-
cessing deserves particular efficiency considerations. 

B. Array Processing under Partitioning 

A partitioning P of array A with extent E is given as a 

finite set of non-overlapping extents E1,…,En for some n N 
which together cover E completely. In other words, E is the 
direct sum of P. 

Consider again two arrays A and B which in this case 
share a common partitioning scheme E. Then, we can 
rewrite A θ B as follows: 

 

 
Figure 6.  Query tree with set tree and embedded array subtree. 



A θ B 

= marray x in D 

  values A[x] θ B[x] 

= concat( 

    marray x in E1 values A[x]θB[x], 

    …, 

    marray x in En values A[x]θB[x] ) 

Partitions form the unit of access to persistent storage. 
Query windows are assessed against the partitioning of the 
target array by consulting a spatial index. The resulting set 
of tiles is fetched by the query engine. In order to efficiently 
process arrays larger than server main memory the physical 
operators are designed in a way that at any instant in time 
only a limited number of partitions has to be kept in RAM; 
this technique is called tile streaming [2]. Obviously, there 
is a large non-deterministic component, as a large number of 
different iteration sequences is possible. Task on hand, 
therefore, is to find a sequence which is optimal in the sense 
that only a minimal number of partition reads have to be 
performed. While this is trivial for unary operations it is 
more involved with binary operations as in general the two 
arrays engaged will have different partitionings. Note, 
though, that even combining two arrays with identical 
partitioning may turn out nontrivial. One possible reason for 
misalignment between the arrays is a different origin in real 
world (such as a geographic offset) which requires shifting 
one array before joining them. Another possible reason is a 
different resolution (such as when combining a Digital 
Elevation Model with satellite imagery). 

III. RELATED WORK 

Both mature [1] and younger systems [23][8] perform 
partitioning into sub-arrays called tiles [7] or chunks 
[19][21]. Theoretical foundations for array operations, opt-
imization, and tiling have been laid in Array Algebra [6]. 

 

 

Figure 7.  Array partitioning and query windows. 

Array DBMSs storage managers usually rely on a 
partitioning in sub-arrays, with a varying degree of 
flexibility depending on the system. Furtado et al [12] have 
established a classification of partitioning schemes for n-D 
arrays. It is based on the number of common border lines an 
array’s partitions share (Figure 8. ). Without discussing the 
partitioning in detail we notice that it is unlikely that two 
independently optimized arrays share the same alignment. 

SciDB uses regular chunking [19], splitting the array ob-
jects into fixed sized chunks whose extent per dimension is 
specified at ingestion time (Figure 8.  left) whereas 
rasdaman allows arbitrary partitioning (Figure 8.  right). 
rasdaman provides workload specific tiling strategies. The 
storage organization of an array is dependent on the access 

pattern used to access its cells. As different queries use diff-
erent access patterns, there is no partitioning strategy that 
performs best for all possible queries. However, higher 
degrees of freedom allow for better adaptation, hence: 
performance. In the best case scenario, only tiles containing 
cells relevant to the query are accessed. In the worst case, 
the entire set of tiles needs to be accessed. Only SciQL [26], 
a prototype Array DBMS query interface extending Mo-
netDB, relies on its builtin column store manager for serial-
izing arrays. From a formal viewpoint, this can be seen as a 
border case where partitions uniformly contain exactly one 
array cell each. 

 

 

Figure 8.  Classification of array partitioning [12]. 

Partitioning represents a physical tuning parameter 
available to the database designer or administrator, for 
example through a storage layout language [3]. ArrayStore 
[21] integrates this physical property with array definition in 
a clause that specifies a common partition size and shape: 

create array myArray  

<x:double> [i=0:99,10,0] 

The statement creates a 1-dimensional array with pixel 
type double, of domain 0:99, with a chunk size of 10 pixels 
and overlap 0.   

In rasdaman, a dedicated storage layout sub-language 
allows, as part of the insert statement, defining a range of 
strategies. The above ArrayStore partitioning looks as foll-
ows in rasdaman, corresponding to a regular tiling strategy: 

insert into arrayCollection 

values myArray 

tiling regular [0:9] 

If only some hotspots are known (which may well 
overlap) then the area of interest strategy is adequate. Here 
the system will generate an optimal tiling in the sense that 
non-overlapping hot spots will be put into a single tile each 
to provide access through a single disk access; overlapping 
hotspots will be stored in a minimal set of tiles. For the re-
maining areas a suitable tiling will be generated automatic-
ally. In the insert statement below, which generates a new 
array tuple from reading in a NetCDF file, only the hot spots 
area1,…, arean need to be listed: 

insert into … 

values decode( $1, “netcdf” ) 

tiling area of interest area1,…, arean 

Most systems hide the internal partitioning and provide a 
uniform large array to users. As an exception, PostGIS 
Raster [27] exposes the tiling structure in the query so that it 
is the user’s task to take care of recombining arrays in joins.  

A special case is SciQL [26]. Arrays are stored in the 
MonetDB column store, that is: they are linearized on disk. 
As this effectively inhibits spatial clustering, subarray ex-



traction will be inefficient in all directions but one. Likely a 
dedicated array store will be added at some point. 

Storage managers like rasdaman [7] allow arbitrary part-
itioning. While this flexibility benefits specific user patterns, 
it makes mismatches in join operations even more likely. 

NASA is considering “data rods” [24] for spatio-tempor-
al data cubes made up from satellite images. In this 
approach a subdivision is chosen with a 1x1 extent in space 
and the full length of the timeseries along the time axis. This 
again is a special case of partitioning. 

To support so-called focal operations, such as con-
volutions which require a neighborhood around each pixel 
for deriving the target pixel, overlapping partitions have 
been proposed and implemented [23]. For our discussion 
this feature is not relevant; first, we focus on the pairwise 
mapping done in the array join, which is known as a local 
operation in Map Algebra [25]. Second, convolution kernels 
consist of very small arrays (for example, 3x3), hence they 
are fully kept in RAM and there is no traversal problem. 

In the relational databases world, graph-theoretic models 
for optimizing disk page access in join operations have been 
investigated, among others, by Pramanik and Ittner [28]. 
They propose representing disk pages as graph nodes, two 
nodes being connected when tuples residing on both are 
joined. This gives us a first hint on how to represent the 
array join as a graph problem, however, due to the com-
pletely different data models (relational tuples as opposed to 
arrays), the subsequent steps do not apply in our case. 

Effectively, to the best of our knowledge no complete 
solution is known for the array join problem.        

IV. ARRAY JOIN ALGORITHM 

Assume two arrays A and B with partitioning extent EA = 
{A1, …, An} and EB = {B1, …, Bm}, respectively, for some 
m, n > 0. Assume further some binary array operation A θ B, 
such as A+B, to be executed on A and B. If both operands fit 
in main memory, all partitions can be loaded from disk 
ahead of processing so that cheap random access to every 
cell can be performed. However, we are interested in situat-
ions where the arrays are exceeding RAM so that some 
partitions have to be swapped out after processing to make 
way for the next partitions. Unfortunately, in face of 
inhomogeneous partitioning of the operands it can happen 
that partitions have to be read and discarded more than once. 
As it turns out, some partition access sequences require 
more repeated reads than others. 

In the sample situation depicted in Figure 7. , the red 
query window requires partitions A1 through A4 to be 
combined with B1 and B2. The query engine would start, say, 
with loading A1 and B1 to extract the required part from each 
partition and perform θ cell by cell. After that, the engine 
may decide to load A3 next. The area of A3 is completely 
contained in B1 which still is available in RAM, so no new 
access to B is required. After that, A2 might get loaded which 
requires B2 as its counterpart. As before, advancing to A4 
allows exploiting B2 completely, after which we are done. 
Hence, the final load sequence is <A1,B1,A3,A2,B2,A4>. It is 
complete because every partition has been evaluated, and it 
is minimal because no partition is accessed more than once. 

 
Figure 9.  Array join pattern P1. 

The task on hand, therefore, is to find a partition travers-
al sequence which minimizes disk reads, ideally accessing 
every partition exactly once. 

This problem does not necessarily have a unique 
solution: Any permutation of the load sequence is 
acceptable, as we do not consider placement on disk etc. For 
example, the sequence shown before is equivalent to the 
following (non-exhaustive) list of sequences: 

< A1, B1, A3, B2, A2, A4 >, < B1, A1, A3, B2, A2, A4 >, 

< A1, B1, A3, A2, B2, A4 >, < B1, A1, A3, A2, B2, A4 > 
However, the problem does have always at least one 

solution: there is always a brute-force approach which loads 
every pair if matching partitions, regardless of possibly 
multiple loads. For our running example, one suboptimal 
solution is the following: < A1,B1,A2,B2,A3,B1,A4,B2>. 
With 8 partition accesses it is considerably longer and, 
hence, more expensive than the above solution of length 6. 

A. Partition Traversal as a Graph Problem 

Our approach to the array join problem is to map part-
ition correspondences to a graph and apply a graph-theoretic 
method to determine a traversal sequence efficiently. 

Let the array join graph G = ( V, E ) be given by a set of 
vertices, V, and a set of edges, E. V consists of all partitions 
participating in the join – in other words, each node 
represents a partition. The first operand’s partition nodes we 
color in red, the second operand’s partition nodes in blue. 
Any two partitions which are combined during the join – 
such as A3 and B1 – induce an edge in E. Figure 10.  shows 
the graph corresponding to P1 shown in Figure 9. . 

On the side we note that obviously G is a bipartite graph: 
any edge ends in nodes of different colors if we color partit-
ions according to their array containment (see Figure 10. ). 

The original problem can now be rephrased to: “Find a 
complete edge traversal that minimizes the number of nodes 
visited”. This is equivalent to the well-known Königsberg 
Bridge problem [11] which in fact let Euler to pioneer graph 
theory. Hierholzer and Wiener have proven that a necessary 
and sufficient condition for the existence of a solution, a so-
called Euler path, is that the graph is connected and has 
exactly zero or two nodes of odd degree [13]. Further, they 
showed that a closed walk – where start and end node are 
identical – exists if all nodes have an even degree; this is 
called an Euler circuit. 

We enter design of the algorithm devising a suitable tra-
versal by observing that array join graphs can be disconnect-
ed, as the example in Figure 11.  shows; we overcome this 
by treating each connected graph separately. Candidate sol-
utions for the array join problem, then, are all permutations 
of the solutions to the individual separate graph problems. 

 



 
Figure 10.  Array join graph G1. 

 

 
Figure 11.  Partitioning P3 and corresponding graph G3. 

 
Figure 12.  Array join graph G5 with auxiliary edges. 

In the sequel we concentrate on connected subgraphs. 
Obviously, array join graphs can contain any number of 
nodes with odd degree which prevents to apply the Hier-
holzer approach. To overcome this we amend the graph with 
auxiliary edges so that all nodes have an even degree. This 
allows us to establish a traversal path for each connected 
component of the graph. In a final cleanup step we optimize 
the paths by removing the extra partition loads coming from 
the auxiliary edges as much as possible. This leads us to the 
algorithm shown in Algorithm 1. 

As an example, reconsider situation P1. In the corresp-
onding join graph G5, edges <A1,B1> and <A2,B4> con-
stitute such auxiliary edges, shown as dotted lines in Figure 
12. . We note in passing that multiple edges are allowed. 

On the resulting graph G5, following Hierholzer and 
Wiener, an Euler circuit exists. Function buildJoinGraph() 
creates the join graph from the input objects. In practice, this 
means accessing each array’s spatial index with the query 
bounding box to determine the tiles affected and their ex-
tents. The next function, isolateConnectedComponents(), 
splits input graph G into a set of connected components to 
be treated individually in the sequel. Function buildEuler-
Graph() augments some given connected graph in a way 
that each node has an even degree. This is achieved by add-
ing auxiliary edges in a way that provides best chances for 
removing them again in the final cleanup stage of build-
TraversalPath(). The algorithm is shown in Algorithm 2. 

ALGORITHM 1: BUILDPATHSET 

Input:  PA, PB: lists of array partition extents 

Output: TS: set of partition identifier lists 

begin 
  G := buildJoinGraph( PA, PB ); 

  set IC := isolateConnectedComponents( G ); 

 set TS := ; 

  forall C  IC 

 do C.buildEulerGraph(); 

  set T := buildTraversalPath( C ); 

   TS.add( T ); 

  done; 

  return TS; 

end 

ALGORITHM 2: BUILDEULERGRAPH 

Input:  C: connected join (sub-) graph 

Output:  C’: augmented join graph 

begin 
  Odd := { Node n: degree(C,n) mod 2 != 0 }; 

 # first connect odd nodes sharing an edge: 

  forall {odd1,odd2} Odd with C.connected(odd1,odd2) 

  do add inner aux edge (odd1, odd2); 

   Odd.subtract( { odd1, odd2 } ); 

  done 

 # connect remaining odd nodes of different color: 

  forall {odd1,odd2} Odd with odd1.color()≠odd2.color 

  do C.addInnerAuxiliaryEdge (odd1, odd2); 

   Odd.subtract( { odd1, odd2 } ); 

  done 

  # step 3: connect all remaining nodes, even same color: 

 forall {odd1,odd2} Odd 

  do C.addOuterAuxEdge (odd1, odd2); 

   Odd.subtract( { odd1, odd2 } ); 

  done 

  return C; 

end 

 
Following this preparation, the traversal path can be 

established in the core function, buildTraversalPath(). Re-
member that the connected input graph G has been aug-
mented to have only even-degree nodes. This means that ev-
ery incoming edge to a node will also have a (different) out-
going edge. Following Hierholzer and Wiener we can walk 
the graph from any starting point without going any edge 
more than once while still visiting each node (possibly more 
than once). In other words, whatever walk we take we can-
not get stuck at any node and eventually will return to our 
starting node. We skip this algorithm as it is straightforward. 

Based on this, function buildTraversalPath () extracts a 
path involving all nodes and all edges, which exists accord-
ing to Hierholzer. Note that this is highly nondeterministic 
as obviously there are many such paths possible. 

The overall result delivered by buildPathSet(), finally, is 
a set of paths, one for each connected component of the 
array join graph. Output of the algorithm is a set of indep-
endent traversal sequences which can be executed in any se-



quence, or in parallel. Within each traversal sequence, the 
algorithm has made a non-deterministic choice. 

The output path set is characterized by the following 
properties. Path length is |E|+1+|X| where E is the number of 
partitions involved and X is the set of outer edges added. X 
is bounded by the number of nodes with odd degree. This 
path length is minimal, according to Hierholzer/Wiener plus 
the strategy of preferring inner auxiliary nodes (which do 
not contribute to paths) over outer auxiliary nodes: no 
shorter path is possible under the constraints given. 

Traversal paths are cycle-invariant, i.e.: any of the nodes 
in the sequence may be used instead of the (randomly pick-
ed) starting point; when the last element in the sequence is 
reached a wrap-around to the first one is performed. This 
degree of freedom may be exploited in the DBMS engine to 
accommodate some other advantageous criterion, such as 
minimizing partition lock conflicts, considering cached part-
itions, etc. Note that all functions uniformly operate on main 
memory data where each partition is represented only by its 
bounding extent, which in practice is just a few bytes. 

B. Examples 

In this section we provide several examples to explain 
the mechanics of traversal path generation. For a warmup, 
let us reconsider the case where arrays A and B share the 
same partitioning (Figure 11. ). We find four connected 
components which conveniently can be evaluated in 
parallel. Each component trivially requires loading of one A 
and one B partition. The corresponding path set might be: 

{ <A1,B1>, <A2,B2>, <A3,B3>, <A4,B4> } 
Next, we reinspect the case of G5. In Figure 12.  we had 

added edges A1 – B1 and A2 – B4 to achieve an Euler 
graph. Paths have a length of 11, one possible choice being: 

<B4,A3,B2,A1,B1,B3,A3,B5,A4,B2,A2> 
The outer auxiliary edge leads to a double load of A3, 

marked by underlining. To see the effect of inner versus out-
er auxiliary nodes we choose different edges, such as <A2, 
B1> and <A1,B4> as shown in Figure 13. . This way we 
obtain two outer auxiliary edges and no inner auxiliary 
edges. A corresponding traversal path is the following: 

<B4,A3,B3,A1,B1,A2,B2,A4,B5,A3,B2,A1> 
We observe that two nodes, A1 and A3, now get loaded 

twice (see underlines), leading to an overall path length of 
12. This situation might be graphically represented by the 
unfolded ring in Figure 14. . 

C. Array Join 

Let us now put all pieces together. The above method 
forms the core of array join evaluation in that it determines 
further processing steps. As part of the physical query opt-
imization process, the join operator will first determine the 
operand arrays’ partition by querying the index. Based on 
this information, buildPathSet() establishes the concrete 
iteration. When it comes to join evaluation, the traversal 
paths will be used to request partitions in a sequence that 
allows to combine overlapping parts of the corresponding 
operand partitions into result partitions. At this time, the 
result object gets established piecemeal. As we will see later 
there is ample opportunity for parallelization in this step. 
Optionally, a retiling of the result object will be performed 
to avoid partition size underflow. 

 

Figure 13.  Array join graph G5 with different auxiliary edges. 

 

Figure 14.  Array join graph G5 unfolded to a ring. 

V. COMPLEXITY ANALYSIS 

Let us briefly analyze the complexity of the resulting 
algorithm. We consider only disk reads – the number of 

cells actually combined in the θ operation obviously is al-
ways the same, so performance as well as buffer memory 
needs, are determined by disk access. 

The best case we achieve when every partition of both A 
and B is read exactly once. This is achieved when no auxil-
iary edges have to be added to achieve an Euler circuit. 
Complexity here is |EA|+|EB|. In the worst case, A is partit-
ioned into compartments of thickness 1 along some axis x1. 
Each such compartment stretches across the full array in 
some axis x2 ≠ x1. Array B is subdivided in a way that along 
axis x2 partitions have thickness 1 while stretching over the 
full extent of B along axis x1. Figure 15.  shows this for the 
2-D case. Data read complexity now becomes |EA|*|EB| as 
every vertical partition has to be matched with every 
horizontal partition on every overlap. In terms of the join 
graph we have a situation that every node has an odd 
degree, hence an according number of auxiliary edges has to 
be added to achieve an Euler circuit (Figure 16. ). 

Intuitively, one might think that adding more dimensions 
leads to even more complicated situations. This, however, is 
not the case as the above argument shows: 2 orthogonally 
partitioned dimensions constitute the worst case in that they 
make all graph nodes have an odd degree. Hence, |EA|*|EB| 
indeed represents a firm upper bound on complexity. 

VI. OPTIMIZATION OPPORTUNITIES 

The information gained form constructing the graph 
gives important insight into parallelization opportunities. 
Disconnected parts of the join graph do not need any in-
formation exchange for join processing, hence they can ad-
vantageously be sent to different compute nodes. If a join 
between two particular objects is known to happen frequent-
ly, or is otherwise important, then the two operand tile sets 
can be accordingly materialized on different shared-nothing 
nodes in advance.  



 
Figure 15.  Worst case join scenario on 2-D arrays. 

 

Figure 16.  Worst case join graph with auxiliary edges. 

Hence, preparatory analysis of the query workload can 
yield exact data distribution hints. We are currently re-
searching on ways to determine optimal distribution 
schemes. Even within a connected subgraph there is par-
allelization potential. Processing a connected graph com-
ponent can be parallelized locally across the cores of a com-
pute node; the shared-all situation in particular allows shar-
ing of buffers. 

Coming back to the extra reads imposed by the traversal, 
we can take advantage of the path information for buffer 
management. This is possible because the path contains 
information about how often a tile load is required. Our im-
plicit assumption so far was that we want to hold only one 
operand partition in RAM at a time, corresponding to an in-
put buffer of size 1 on each operand. However, by establish-
ing a histogram of each partition’s use in a given path we 
can obtain the number of buffers needed to not reload any 
partition ever. Even more sophisticated, given operand 
buffers of some size NA and NB the path allows deducing the 
number of reloads required. This way, a fine-grain tradeoff 
between main memory and performance is possible. 

Currently all partitions, regardless of their size, are con-
sidered to bear the same costs for loading. While this is a 
good first approximation for a well-tuned array database 
[22], this assumption might be revisited. In particular for 
cases where some partitions have to be fetched over a net-
works the cost weights associated to each node will need to 
be individual. 

Further optimizations are currently under investigation, 
exploiting the degree of freedom given by the nondetermin-
ism of path construction. 

VII. EVALUATION 

We have implemented the array join in the commercial 
variant of the rasdaman Array DBMS, rasdaman enterprise. 
We discuss this implementation and compare it against 
alternatives. The fully naïve approach to joining two arrays 

would be to materialize both in main memory. While this 
guarantees minimal disk reads it requires substantial mem-
ory because, for some size S of an operand, the memory re-
quired is 3S. Hence, this does not scale to array sizes beyond 
main memory.The semi-naïve approach taken by rasdaman 
(both community, the open-source version, and enterprise) 
fully materializes the first operand and then iterates in a tile-
by-tile fashion over the second operand (recall that 
partitions in rasdaman are called tiles). While this reduces 

the memory amount from 3S to S+ 1+ 2, where i are tile 
sizes, there remains a main memory limit on the array size 
on principle. Further, this was an ad-hoc implementation 
without the conceptual fundament established in this paper. 
Our new approach overcomes this by requiring only a small, 
plannable number of tiles to be materialized at any moment 
in time, thereby overcoming the main memory sizing 
barrier. Notably, this join is non-blocking: result array tiles 
can be streamed upwards as they become available. 

We have measured the memory usage of rasdaman’s 
execution tree when performing a simple binary operation 
(in this case addition), between two array objects under 
different partitioning schemes. First we have used the semi-
naïve method described above, and then the new approach 
proposed in this paper. Both arrays represent red-green-blue 
images of 18000 by 18000 pixels of type (byte,byte,byte), 
with a size of approximately 1GB each. 

In the first iteration, both arrays have been partitioned 
using the same scheme: regular tiling [12]. Figure 17.  
shows the results obtained when the arrays have been 
partitioned into 4 tiles of approximately 250MB each. The 
loading sequence of the tiles is shown for each step of the 
execution. The memory used by the resulting tiles (when 
performing addition between tiles of each object, the result 
is written in a separate tile) is also accounted for. However, 
as soon as the execution step ends, the resulting tile is 
passed on (either to the next node in the tree if existing or, in 
our case, to the client) and corresponding memory is freed. 

The same operation, this time executed following the 
graph approach, uses only half of the memory, without 
performing extra read operations. Moreover, after each 
execution step, memory usage drops to 0, which indicates 
that we could execute all the steps in parallel without 
imposing a shared-memory architecture. The execution 
steps as well as the memory usage are shown in Fig. 18. 

Tile sizes of 250MB are not typical for our applications, 
however they have been chosen so that the loading sequence 
can be followed easily in our assessment. In a more practic-
ally relevant example, the same objects have been partition-
ed into regular tiles of 20MB each. Fig. 19 shows the mem-
ory usage in the semi-naïve case, which corresponds to our 
expectations: first operand is fully materialized (so around 
1GB of memory), and the second one is loaded tile by tile to 
produce the result. Fig. 20 displays the memory usage for 
the same operation, executed following the graph approach, 
and shows that the maximum amount of memory that is 
used is below 70MB (which corresponds to roughly two 
operand tiles + one resulting tile).  

Our second experiment targeted the same objects, but 
partitioned into tiles along perpendicular dimensions (sim-
ilar to the example in Fig. 15).  This means that every tile of 



the first object intersects every tile of the second object, 
which implies that every combination of tiles will need to be 
in memory at some point. Fig. 21 shows the behavior of the 
semi-naïve algorithm. By comparison, the graph based 
algorithm uses less memory, however it performs an extra 
read operation (Fig. 22; A1 is read as step 1, discarded at 
step 2 and read again at step 8), thus it takes longer.  

        In order to allow a configurable trade-off between 
the number of extra reads and maximum memory usage, a 
buffer that can hold a given number of tiles is implemented. 
In our case, if we allow the buffer to hold tile A1 between 
steps 3 and 7, the extra read is not required anymore; results 
are shown in Figure 23. . Thus, one may choose, depending 
on the available hardware, a buffer size that ensures a 
balance between execution time and memory consumption.  

In summary, we see that by allowing a modest, control-
able amount of extra reads we obtain a scalable algorithm 
which provides extra information useful for a priori buffer 
management parallelization. 

  
Figure 17.  Memory usage: semi-naïve join, tile size 250MB 

 
Figure 18.  Memory usage: graph-based join, tile size 250MB 

 
Figure 19.  Memory usage: semi-naïve join, tile size 20MB 

Finally, we observe that joining two arrays with highly 
divergent partitioning schemes will result in an array that 
has a very fine partition granularity. In the worst case, arrays 
with |EA| and |EB| partitions, respectively, will yield an array 
with |EA|*|EB| partitions. This may lead to undesirably small 
partitions. To avoid this, a repartitioning of the result object 
may be advisable before continuing query evaluation. 

 
 

 
Figure 20.  Memory usage: graph-based join, tile size 20MB 

 
Figure 21.  Memory usage: semi-naïve join, perpendicular tiles 

 

Figure 22.  Memory usage: graph-based join, perpendicular tiling, no buffer 

 
Figure 23.  Memory usage: graph-based join, perpendicular tiling, with 

buffer 



VIII. SUMMARY 

Increasingly it is recognized that the effort of reorganiz-
ing arrays during ingestion pays off substantially with re-
trieval. With this new degree of freedom, though, the align-
ment problem in array joins occurs even more frequently. 

Combining two arrays into a new one constitutes an 
array join, a common operation class in Array DBMSs. In 
this paper, we have proposed a method for finding an 
efficient traversal on the partitions of the participating 
arrays. Efficiency is important in face of the large volume 
even single arrays can comprise. To the best of our 
knowledge this problem has not been addressed before. 

We map the arrays to a bipartite graph where nodes cor-
respond to partitions and edges indicate that the two partit-
ions connected overlap, hence have to be combined during 
join evaluation. From this graph the array join algorithm de-
duces the pairings between partitions and finds a minimal 
sequence of partition accesses. As our graph approach is ag-
nostic of the directions of overlap, this method works for 
any number of dimensions. The traversal path allows easily 
determining the number of partition buffers necessary to 
prevent multiple reads. Conversely, when a certain number 
of partition buffers is made available for join processing 
then the traversal path naturally induces an eviction strategy. 
Furthermore, the graph approach provides valuable infor-
mation for mixed shared-nothing / shared-all parallelization.  

We expect useful insights from the manifold operational 
rasdaman installations which, in the case of the European 
Space Agency, already exceed 130 Terabyte of satellite im-
age timeseries datacubes [5]; in the intercontinental Earth-
Server initiative, intercontinental federations between large-
scale satellite and climate data centers are being established 
with datacubes exceeding 1 Petabyte each. Being able to 
join such datacubes efficiently will be of critical importance. 
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