
On the Efficient Evaluation of Array Joins

Peter Baumann
Jacobs University

Bremen, Germany

28759 Bremen, Germany

e-mail: p.baumann@jacobs-university.de

Vlad Merticariu

rasdaman GmbH

28759 Bremen, Germany
e-mail: merticariu@rasdaman.com

Abstract—Array Databases close a gap in the database

ecosystem by adding modeling, storage, and processing

support on multi-dimensional arrays. Declarative queries

provide processing of arrays of regularly massive size, such as

Tera- to Petabyte datacubes, while allowing internal degrees

of freedom in partitioning the large arrays into tractable sub-

arrays. Among the important new operations is the array

Theta-Join, such as overlaying two images. Evaluation of such

joins is complicated by the fact that the participating arrays

likely do not align in their partitioning schemes. This can lead

to inefficient multiple reads of sub-arrays.

We introduce array joins and present an efficient way of

pairing corresponding sub-arrays. As a byproduct, this

technique delivers information on optimal data placement for

parallel join evaluation. The method is implemented in the

Array DBMS rasdaman which is in operational use at data

centers and mapping agencies.

Array database; scientific database; join; rasdaman

I. INTRODUCTION

In the era of NoSQL and NewSQL databases, multi-di-
mensional arrays meantime are accepted as an additional
data category that needs to be supported by databases, next
to sets, trees, and graphs. For the representation of sensor,
image, simulation output, and statistics data they arguably
comprise the larger part of today’s Big Data in virtually all
science and engineering application domains and beyond.
Examples in the Earth Sciences include 2-D satellite image
maps, 3-D x/y/t image timeseries and x/y/z geological voxel
models, as well a as four-dimensional x/y/z/t weather fore-
cast datacubes. In the Life Sciences we find microarray data,
gene expression data, as well as a variety of image modal-
ities like CAT scans. In the Astro Sciences we encounter
large-scale cosmological simulations as well as optical and
radio telescope observations.

In query processing, arrays behave quite differently from
traditional tuples. While in classical relational systems
tuples are well below database page size, single array
objects easily exceed today’s server RAM, such as 4-D
climate simulation data cubes with dozens of Terabytes.
Hence, partitioning schemes have been introduced which
allow to optimize subsetting and to process arrays piece-
wise, such as tiling [3] [12] and chunking [19].

The most important requirement on any partitioning
scheme is to preserve the spatial proximity on array cells
induced by the well-defined Euclidean neighborhood of

cells. This is a decisive factor for array query performance
as array disk access patterns almost always are a function of
this neighborhood. In plain words, when a particular cell is
accessed it is extremely likely that its neighbor pixels will
get accessed, too.

Aside from this spatial clustering of array cells there is a
wide open space for partitioning strategies; a systematic
study has been conducted by Paula Furtado [12]. A good
partitioning strategy will minimize the number of disk
accesses and the amount of data to be read from disk for
some given access pattern induced by the query workload
under consideration. Ideally, a query can be answered with
just one disk access. In practice, though, access patterns
may conflict.

Consider for example, a satellite image timeseries stored
as a 3-D x/y/t array (Figure 1.). One common access pattern
is to extract time slices, such as “sea surface temperature in
the Tyrrhenian Sea at timestamp 2002-04-12T12:36”
(Figure 1. top right). This pattern is best supported by the
classical storage in data centers where each incoming image
is stored as a, say, GeoTIFF image. Another common
pattern gaining much importance in particular for environ-
mental monitoring is “sea surface temperature at position
x/y” (Figure 1. bottom right). Such kind of queries obvious-
ly are best accommodated by a partitioning that stretches
along the time dimension while narrow (in the extreme case:
1x1 pixel) horizontally. Figure 2. shows an early experi-
mental interface to these data (left) and a modern portal on a
130+ TB database hosted by the European Space Agency
[5] (right), all using rasdaman.

However, there is no single optimal partitioning, rather
solutions have to be determined relative to a given work-
load. Even a single workload may contain patterns suggest-
ing conflicting partitionings, in which case a tradeoff has to
be found. Figure 3. shows some partitionings which are
meant to outline the wide range of possible options. Some-
times these may even be non-disjoint and overlapping [21].

Figure 1. Satellite image timeseries: 3-D extract (left), schematic spatial

and temporal datacube subsetting (center), x/y and t cutouts (right);

source: rasdaman screenshot, data courtesy DLR-DFD

mailto:p.baumann@jacobs-university.de
mailto:merticariu@rasdaman.com

Figure 2. Portal interface for spatio-temporal data selection and

processing: early experimental portal by DLR-DFD (left) and recent ESA
portal done by MEEO s.r.l.

Figure 3. Sample partitioning strategies [12].

Among the various operations an array query language
has to offer (see [16] for operators under consideration for
the forthcoming ISO SQL array extension) there is the array
join which combines two arrays through some operation.
Unlike the relational join where a join predicate (such as
R.a=S.b) determines the tuples retained from the cross
product of the operand sets, an array join retains the cells of
all locations the arrays share and performs some operation
on each matching cell pair. Practical applications are
manifold, such as overlaying two images, computing the
vegetation index from red and infrared bands, etc.

For example, in Figure 4. a standard situation in Web
mapping is shown. The conceptual model consists of 2D
image layers stacked on top of each other, each one derived
from a base map. The server generates the layers, overlays
them, and delivers a single RGB image to the client1. In the
map overlay on hand, the stack consists of the following
layers, from top to bottom:

 an elevation layer coded in red, yellow, green, and

transparent to highlight areas endangered by floods.

 two so-called “thematic maps” for water lines and

water areas, respectively, stored as bit masks which

get colored on the fly in two distinct shades of blue.

 at the bottom, a grayscale airborne image.

Image, thematic, and elevation data are obtained from
different sources with individual spatial resolution and are
scaled to the output resolution before overlaying.

Figure 4. Map generated from four base layers; source: rasdaman

screenshot; data courtesy Zwickau municipality, Germany.

1 Alternatively, clients may assemble the layers into the final

image, but our discussion focuses on server-side processing – in

particular, as in this server-side approach substantially less data

have to be transferred to the client.

This is the simplest case; more complex combinations of
arrays – such as matrix multiplications and other Linear Al-
gebra – are conceivable and practically meaningful; how-
ever, we claim that the basic problem remains the same:
pairwise combining cells form the input arrays based on
their matching positions. Hence, the problem might be
translated into relational algebra as a join on the coordinates,
as we will discuss lateron. In practice, the partitioning
supports joins by naturally providing a spatial access
method respecting spatial clustering.

During evaluation of array joins under partitioning the
engine loads matching partitions from disk as input to the
combination function (such as the overlay above). This is
straightforward in case both arrays share the same under-
lying partitioning scheme. In general, however, the patterns
will differ, for reasons of different spatial resolution,
optimization of each array for different access patterns, etc.
Treatment of partially overlapping partitions obviously
makes it difficult to retain the optimal situation where each
partition is loaded only once, unless we assume that all
partitions can be loaded into the engine’s main memory,
which is unrealistic in view of today’s “Big Data”.

In this paper we introduce a technique which, based on
an arbitrary partitioning of the operand arrays in a join,
guarantee a minimal number of multiple reads for the
partitions involved. We show that the remaining multiple
reads can be determined in advance, and that the algorithm
is optimal in that the remaining excessive reads cannot be
avoided. The resulting scheduling algorithm for array join
evaluation additionally yields a distribution criterion for join
parallelization under a shared-nothing regime. The remaind-
er of this contribution is organized as follows. In the next
Section, we briefly introduce array management in data-
bases, as far as necessary for our discussion. Section 3
discusses related work. Our array join evaluation method is
presented in Section 4, which undergoes a complexity
analysis in Section 5. Optimization opportunities are
assessed in Section 6, followed by an evaluation in Section
7. Finally, Section 8 concludes the paper.

II. ARRAYS IN DATABASES

This section gives a sketchy description of array
modeling and querying, sufficient for the purpose of this
paper. While the concepts discussed in this paper are
universal and independent from a particular array model or
language we will use the notation of the ISO Array SQL
standard under development [15], which is implemented in
the the rasdaman (“raster data manager”) Array DBMS. In
addition to the relevance this language has it is backed by a
thorough algebraic formalization suitable for describing
queries, optimization, and storage mapping, Array Algebra
[6], which is a prerequisite for the array join formalization
we undertake. A comprehensive introduction to array
queries can be found in [18]; a comparison of different array
models has been published in [4] and [9].

A. Array Modelling and Querying

Formally, a d-dimensional array is a function a: D V
where the domain consists of the d-fold cross product of
closed integer intervals:

D = {lo1, …, hi1} … {lod, …, hid} with loi≤hii for 1≤i≤d
V is some non-empty value set, also called the array’s

cell type. Single elements in such an array we call cells.
In terms of operations on arrays, we rely on Array Al-

gebra [6], a minimal formal framework of well understood
expressiveness. An array constructor, marray, and an
aggregator called condenser form the two core operations.

The marray operator creates an array of a given extent
and assigns values to each cell through some expression
which may contain occurrences of the cell’s coordinate. An

example of a unary marray operation is deriving the
logarithm of some input array of given domain extent D:

marray x in D

values log(a[x])

An example for a binary operator is addition of two
images:

marray x in D

values a[x] + b[x]

In fact, any binary operation defined on the input arrays’
cell types this way “induce” corresponding array operations.
We require that both operand arrays share the same spatial
extent so that the pairwise matching of array cells is defined.

Syntactically, we abbreviate such marray operations to the
simpler form of

a+b

This is the kind of operations which introduce array
joins, and we will focus on these in the sequel.

Another operation we will need later is array concatenat-
ion. For arrays a with domain A and b with B we define

a concat b := marray x in A B

 values if x A then a[x]

 else b[x]

Obviously, the direct sum of the input domains must be
a valid array domain again. (Again, overlapping techniques
[21] have no impact on this discussion – by definition they
only replicate values, so that the value for each array
coordinate remains unambiguously defined.) As an
example, consider array a with extent [-10:5,-2:2] and b
with extent [6:10,-2:2]. The resulting domain extent is [-
10:10,-2:2] as Figure 5. shows.

It is straightforward to extend concatenation to an n-ary
function provided the input array domains altogether form a
valid array partition (see later for a formal definition).

Only for completeness we briefly mention condensers
which act similar to SQL aggregates by iterating over an
array and consolidating all values into a single result scalar.

The condensing operation is mentioned explicitly,
together with some preprocessing expression which again
may contain occurrences of the coordinates visited:

Figure 5. Concatenation of two arrays (color code as in Section 4)

condense +

over x in D

using A[x]

which this case can be abbreviated to add_cells(A).
In passing we note that array operations, being 2

nd
 order

with functions as parameters, introduce functionals.
Following ISO SQL we embed arrays into the relational

model as a new column type; this approach is shared by the
majority of systems. This offers several practical advantag-
es, such as a clear separation of concerns in query optimizat-
ion and evaluation which eases mixed optimization [17].
Assuming tables R and S each containing an array-valued
attribute A and B, respectively, we can retrieve a result array

set containing the θ-combination of both arrays by writing
select R.A θ S.B

from R, S

During evaluation the set (i.e., relational) engine first
establishes the cross product of R.A and S.B as usual lead-
ing, after projection, to a set of pairs (R.A,S.B). Each pair are
then is forwarded to the array engine as input operands for
the array expression. The array engine responds with a
single output array for each input pair which the set engine
recombines into the final list of result arrays.

This approach has the attractive property that the set
mechanics as such remains unaffected (see Figure 6.), the
novel part is on micro-level where the concrete input array
instances are already provided by the set engine and the
result is computed from those. As such, array-valued attrib-
utes can be rather massive as compared to the small (i.e., be-
low page size) alphanumeric attribute values their pro-
cessing deserves particular efficiency considerations.

B. Array Processing under Partitioning

A partitioning P of array A with extent E is given as a

finite set of non-overlapping extents E1,…,En for some n N
which together cover E completely. In other words, E is the
direct sum of P.

Consider again two arrays A and B which in this case
share a common partitioning scheme E. Then, we can
rewrite A θ B as follows:

Figure 6. Query tree with set tree and embedded array subtree.

A θ B

= marray x in D

 values A[x] θ B[x]

= concat(

 marray x in E1 values A[x]θB[x],

 …,

 marray x in En values A[x]θB[x])

Partitions form the unit of access to persistent storage.
Query windows are assessed against the partitioning of the
target array by consulting a spatial index. The resulting set
of tiles is fetched by the query engine. In order to efficiently
process arrays larger than server main memory the physical
operators are designed in a way that at any instant in time
only a limited number of partitions has to be kept in RAM;
this technique is called tile streaming [2]. Obviously, there
is a large non-deterministic component, as a large number of
different iteration sequences is possible. Task on hand,
therefore, is to find a sequence which is optimal in the sense
that only a minimal number of partition reads have to be
performed. While this is trivial for unary operations it is
more involved with binary operations as in general the two
arrays engaged will have different partitionings. Note,
though, that even combining two arrays with identical
partitioning may turn out nontrivial. One possible reason for
misalignment between the arrays is a different origin in real
world (such as a geographic offset) which requires shifting
one array before joining them. Another possible reason is a
different resolution (such as when combining a Digital
Elevation Model with satellite imagery).

III. RELATED WORK

Both mature [1] and younger systems [23][8] perform
partitioning into sub-arrays called tiles [7] or chunks
[19][21]. Theoretical foundations for array operations, opt-
imization, and tiling have been laid in Array Algebra [6].

Figure 7. Array partitioning and query windows.

Array DBMSs storage managers usually rely on a
partitioning in sub-arrays, with a varying degree of
flexibility depending on the system. Furtado et al [12] have
established a classification of partitioning schemes for n-D
arrays. It is based on the number of common border lines an
array’s partitions share (Figure 8.). Without discussing the
partitioning in detail we notice that it is unlikely that two
independently optimized arrays share the same alignment.

SciDB uses regular chunking [19], splitting the array ob-
jects into fixed sized chunks whose extent per dimension is
specified at ingestion time (Figure 8. left) whereas
rasdaman allows arbitrary partitioning (Figure 8. right).
rasdaman provides workload specific tiling strategies. The
storage organization of an array is dependent on the access

pattern used to access its cells. As different queries use diff-
erent access patterns, there is no partitioning strategy that
performs best for all possible queries. However, higher
degrees of freedom allow for better adaptation, hence:
performance. In the best case scenario, only tiles containing
cells relevant to the query are accessed. In the worst case,
the entire set of tiles needs to be accessed. Only SciQL [26],
a prototype Array DBMS query interface extending Mo-
netDB, relies on its builtin column store manager for serial-
izing arrays. From a formal viewpoint, this can be seen as a
border case where partitions uniformly contain exactly one
array cell each.

Figure 8. Classification of array partitioning [12].

Partitioning represents a physical tuning parameter
available to the database designer or administrator, for
example through a storage layout language [3]. ArrayStore
[21] integrates this physical property with array definition in
a clause that specifies a common partition size and shape:

create array myArray

<x:double> [i=0:99,10,0]

The statement creates a 1-dimensional array with pixel
type double, of domain 0:99, with a chunk size of 10 pixels
and overlap 0.

In rasdaman, a dedicated storage layout sub-language
allows, as part of the insert statement, defining a range of
strategies. The above ArrayStore partitioning looks as foll-
ows in rasdaman, corresponding to a regular tiling strategy:

insert into arrayCollection

values myArray

tiling regular [0:9]

If only some hotspots are known (which may well
overlap) then the area of interest strategy is adequate. Here
the system will generate an optimal tiling in the sense that
non-overlapping hot spots will be put into a single tile each
to provide access through a single disk access; overlapping
hotspots will be stored in a minimal set of tiles. For the re-
maining areas a suitable tiling will be generated automatic-
ally. In the insert statement below, which generates a new
array tuple from reading in a NetCDF file, only the hot spots
area1,…, arean need to be listed:

insert into …

values decode($1, “netcdf”)

tiling area of interest area1,…, arean

Most systems hide the internal partitioning and provide a
uniform large array to users. As an exception, PostGIS
Raster [27] exposes the tiling structure in the query so that it
is the user’s task to take care of recombining arrays in joins.

A special case is SciQL [26]. Arrays are stored in the
MonetDB column store, that is: they are linearized on disk.
As this effectively inhibits spatial clustering, subarray ex-

traction will be inefficient in all directions but one. Likely a
dedicated array store will be added at some point.

Storage managers like rasdaman [7] allow arbitrary part-
itioning. While this flexibility benefits specific user patterns,
it makes mismatches in join operations even more likely.

NASA is considering “data rods” [24] for spatio-tempor-
al data cubes made up from satellite images. In this
approach a subdivision is chosen with a 1x1 extent in space
and the full length of the timeseries along the time axis. This
again is a special case of partitioning.

To support so-called focal operations, such as con-
volutions which require a neighborhood around each pixel
for deriving the target pixel, overlapping partitions have
been proposed and implemented [23]. For our discussion
this feature is not relevant; first, we focus on the pairwise
mapping done in the array join, which is known as a local
operation in Map Algebra [25]. Second, convolution kernels
consist of very small arrays (for example, 3x3), hence they
are fully kept in RAM and there is no traversal problem.

In the relational databases world, graph-theoretic models
for optimizing disk page access in join operations have been
investigated, among others, by Pramanik and Ittner [28].
They propose representing disk pages as graph nodes, two
nodes being connected when tuples residing on both are
joined. This gives us a first hint on how to represent the
array join as a graph problem, however, due to the com-
pletely different data models (relational tuples as opposed to
arrays), the subsequent steps do not apply in our case.

Effectively, to the best of our knowledge no complete
solution is known for the array join problem.

IV. ARRAY JOIN ALGORITHM

Assume two arrays A and B with partitioning extent EA =
{A1, …, An} and EB = {B1, …, Bm}, respectively, for some
m, n > 0. Assume further some binary array operation A θ B,
such as A+B, to be executed on A and B. If both operands fit
in main memory, all partitions can be loaded from disk
ahead of processing so that cheap random access to every
cell can be performed. However, we are interested in situat-
ions where the arrays are exceeding RAM so that some
partitions have to be swapped out after processing to make
way for the next partitions. Unfortunately, in face of
inhomogeneous partitioning of the operands it can happen
that partitions have to be read and discarded more than once.
As it turns out, some partition access sequences require
more repeated reads than others.

In the sample situation depicted in Figure 7. , the red
query window requires partitions A1 through A4 to be
combined with B1 and B2. The query engine would start, say,
with loading A1 and B1 to extract the required part from each
partition and perform θ cell by cell. After that, the engine
may decide to load A3 next. The area of A3 is completely
contained in B1 which still is available in RAM, so no new
access to B is required. After that, A2 might get loaded which
requires B2 as its counterpart. As before, advancing to A4
allows exploiting B2 completely, after which we are done.
Hence, the final load sequence is <A1,B1,A3,A2,B2,A4>. It is
complete because every partition has been evaluated, and it
is minimal because no partition is accessed more than once.

Figure 9. Array join pattern P1.

The task on hand, therefore, is to find a partition travers-
al sequence which minimizes disk reads, ideally accessing
every partition exactly once.

This problem does not necessarily have a unique
solution: Any permutation of the load sequence is
acceptable, as we do not consider placement on disk etc. For
example, the sequence shown before is equivalent to the
following (non-exhaustive) list of sequences:

< A1, B1, A3, B2, A2, A4 >, < B1, A1, A3, B2, A2, A4 >,

< A1, B1, A3, A2, B2, A4 >, < B1, A1, A3, A2, B2, A4 >
However, the problem does have always at least one

solution: there is always a brute-force approach which loads
every pair if matching partitions, regardless of possibly
multiple loads. For our running example, one suboptimal
solution is the following: < A1,B1,A2,B2,A3,B1,A4,B2>.
With 8 partition accesses it is considerably longer and,
hence, more expensive than the above solution of length 6.

A. Partition Traversal as a Graph Problem

Our approach to the array join problem is to map part-
ition correspondences to a graph and apply a graph-theoretic
method to determine a traversal sequence efficiently.

Let the array join graph G = (V, E) be given by a set of
vertices, V, and a set of edges, E. V consists of all partitions
participating in the join – in other words, each node
represents a partition. The first operand’s partition nodes we
color in red, the second operand’s partition nodes in blue.
Any two partitions which are combined during the join –
such as A3 and B1 – induce an edge in E. Figure 10. shows
the graph corresponding to P1 shown in Figure 9. .

On the side we note that obviously G is a bipartite graph:
any edge ends in nodes of different colors if we color partit-
ions according to their array containment (see Figure 10.).

The original problem can now be rephrased to: “Find a
complete edge traversal that minimizes the number of nodes
visited”. This is equivalent to the well-known Königsberg
Bridge problem [11] which in fact let Euler to pioneer graph
theory. Hierholzer and Wiener have proven that a necessary
and sufficient condition for the existence of a solution, a so-
called Euler path, is that the graph is connected and has
exactly zero or two nodes of odd degree [13]. Further, they
showed that a closed walk – where start and end node are
identical – exists if all nodes have an even degree; this is
called an Euler circuit.

We enter design of the algorithm devising a suitable tra-
versal by observing that array join graphs can be disconnect-
ed, as the example in Figure 11. shows; we overcome this
by treating each connected graph separately. Candidate sol-
utions for the array join problem, then, are all permutations
of the solutions to the individual separate graph problems.

Figure 10. Array join graph G1.

Figure 11. Partitioning P3 and corresponding graph G3.

Figure 12. Array join graph G5 with auxiliary edges.

In the sequel we concentrate on connected subgraphs.
Obviously, array join graphs can contain any number of
nodes with odd degree which prevents to apply the Hier-
holzer approach. To overcome this we amend the graph with
auxiliary edges so that all nodes have an even degree. This
allows us to establish a traversal path for each connected
component of the graph. In a final cleanup step we optimize
the paths by removing the extra partition loads coming from
the auxiliary edges as much as possible. This leads us to the
algorithm shown in Algorithm 1.

As an example, reconsider situation P1. In the corresp-
onding join graph G5, edges <A1,B1> and <A2,B4> con-
stitute such auxiliary edges, shown as dotted lines in Figure
12. . We note in passing that multiple edges are allowed.

On the resulting graph G5, following Hierholzer and
Wiener, an Euler circuit exists. Function buildJoinGraph()
creates the join graph from the input objects. In practice, this
means accessing each array’s spatial index with the query
bounding box to determine the tiles affected and their ex-
tents. The next function, isolateConnectedComponents(),
splits input graph G into a set of connected components to
be treated individually in the sequel. Function buildEuler-
Graph() augments some given connected graph in a way
that each node has an even degree. This is achieved by add-
ing auxiliary edges in a way that provides best chances for
removing them again in the final cleanup stage of build-
TraversalPath(). The algorithm is shown in Algorithm 2.

ALGORITHM 1: BUILDPATHSET

Input: PA, PB: lists of array partition extents

Output: TS: set of partition identifier lists

begin
 G := buildJoinGraph(PA, PB);

 set IC := isolateConnectedComponents(G);

 set TS := ;

 forall C IC

 do C.buildEulerGraph();

 set T := buildTraversalPath(C);

 TS.add(T);

 done;

 return TS;

end

ALGORITHM 2: BUILDEULERGRAPH

Input: C: connected join (sub-) graph

Output: C’: augmented join graph

begin
 Odd := { Node n: degree(C,n) mod 2 != 0 };

 # first connect odd nodes sharing an edge:

 forall {odd1,odd2} Odd with C.connected(odd1,odd2)

 do add inner aux edge (odd1, odd2);

 Odd.subtract({ odd1, odd2 });

 done

 # connect remaining odd nodes of different color:

 forall {odd1,odd2} Odd with odd1.color()≠odd2.color

 do C.addInnerAuxiliaryEdge (odd1, odd2);

 Odd.subtract({ odd1, odd2 });

 done

 # step 3: connect all remaining nodes, even same color:

 forall {odd1,odd2} Odd

 do C.addOuterAuxEdge (odd1, odd2);

 Odd.subtract({ odd1, odd2 });

 done

 return C;

end

Following this preparation, the traversal path can be

established in the core function, buildTraversalPath(). Re-
member that the connected input graph G has been aug-
mented to have only even-degree nodes. This means that ev-
ery incoming edge to a node will also have a (different) out-
going edge. Following Hierholzer and Wiener we can walk
the graph from any starting point without going any edge
more than once while still visiting each node (possibly more
than once). In other words, whatever walk we take we can-
not get stuck at any node and eventually will return to our
starting node. We skip this algorithm as it is straightforward.

Based on this, function buildTraversalPath () extracts a
path involving all nodes and all edges, which exists accord-
ing to Hierholzer. Note that this is highly nondeterministic
as obviously there are many such paths possible.

The overall result delivered by buildPathSet(), finally, is
a set of paths, one for each connected component of the
array join graph. Output of the algorithm is a set of indep-
endent traversal sequences which can be executed in any se-

quence, or in parallel. Within each traversal sequence, the
algorithm has made a non-deterministic choice.

The output path set is characterized by the following
properties. Path length is |E|+1+|X| where E is the number of
partitions involved and X is the set of outer edges added. X
is bounded by the number of nodes with odd degree. This
path length is minimal, according to Hierholzer/Wiener plus
the strategy of preferring inner auxiliary nodes (which do
not contribute to paths) over outer auxiliary nodes: no
shorter path is possible under the constraints given.

Traversal paths are cycle-invariant, i.e.: any of the nodes
in the sequence may be used instead of the (randomly pick-
ed) starting point; when the last element in the sequence is
reached a wrap-around to the first one is performed. This
degree of freedom may be exploited in the DBMS engine to
accommodate some other advantageous criterion, such as
minimizing partition lock conflicts, considering cached part-
itions, etc. Note that all functions uniformly operate on main
memory data where each partition is represented only by its
bounding extent, which in practice is just a few bytes.

B. Examples

In this section we provide several examples to explain
the mechanics of traversal path generation. For a warmup,
let us reconsider the case where arrays A and B share the
same partitioning (Figure 11.). We find four connected
components which conveniently can be evaluated in
parallel. Each component trivially requires loading of one A
and one B partition. The corresponding path set might be:

{ <A1,B1>, <A2,B2>, <A3,B3>, <A4,B4> }
Next, we reinspect the case of G5. In Figure 12. we had

added edges A1 – B1 and A2 – B4 to achieve an Euler
graph. Paths have a length of 11, one possible choice being:

<B4,A3,B2,A1,B1,B3,A3,B5,A4,B2,A2>
The outer auxiliary edge leads to a double load of A3,

marked by underlining. To see the effect of inner versus out-
er auxiliary nodes we choose different edges, such as <A2,
B1> and <A1,B4> as shown in Figure 13. . This way we
obtain two outer auxiliary edges and no inner auxiliary
edges. A corresponding traversal path is the following:

<B4,A3,B3,A1,B1,A2,B2,A4,B5,A3,B2,A1>
We observe that two nodes, A1 and A3, now get loaded

twice (see underlines), leading to an overall path length of
12. This situation might be graphically represented by the
unfolded ring in Figure 14. .

C. Array Join

Let us now put all pieces together. The above method
forms the core of array join evaluation in that it determines
further processing steps. As part of the physical query opt-
imization process, the join operator will first determine the
operand arrays’ partition by querying the index. Based on
this information, buildPathSet() establishes the concrete
iteration. When it comes to join evaluation, the traversal
paths will be used to request partitions in a sequence that
allows to combine overlapping parts of the corresponding
operand partitions into result partitions. At this time, the
result object gets established piecemeal. As we will see later
there is ample opportunity for parallelization in this step.
Optionally, a retiling of the result object will be performed
to avoid partition size underflow.

Figure 13. Array join graph G5 with different auxiliary edges.

Figure 14. Array join graph G5 unfolded to a ring.

V. COMPLEXITY ANALYSIS

Let us briefly analyze the complexity of the resulting
algorithm. We consider only disk reads – the number of

cells actually combined in the θ operation obviously is al-
ways the same, so performance as well as buffer memory
needs, are determined by disk access.

The best case we achieve when every partition of both A
and B is read exactly once. This is achieved when no auxil-
iary edges have to be added to achieve an Euler circuit.
Complexity here is |EA|+|EB|. In the worst case, A is partit-
ioned into compartments of thickness 1 along some axis x1.
Each such compartment stretches across the full array in
some axis x2 ≠ x1. Array B is subdivided in a way that along
axis x2 partitions have thickness 1 while stretching over the
full extent of B along axis x1. Figure 15. shows this for the
2-D case. Data read complexity now becomes |EA|*|EB| as
every vertical partition has to be matched with every
horizontal partition on every overlap. In terms of the join
graph we have a situation that every node has an odd
degree, hence an according number of auxiliary edges has to
be added to achieve an Euler circuit (Figure 16.).

Intuitively, one might think that adding more dimensions
leads to even more complicated situations. This, however, is
not the case as the above argument shows: 2 orthogonally
partitioned dimensions constitute the worst case in that they
make all graph nodes have an odd degree. Hence, |EA|*|EB|
indeed represents a firm upper bound on complexity.

VI. OPTIMIZATION OPPORTUNITIES

The information gained form constructing the graph
gives important insight into parallelization opportunities.
Disconnected parts of the join graph do not need any in-
formation exchange for join processing, hence they can ad-
vantageously be sent to different compute nodes. If a join
between two particular objects is known to happen frequent-
ly, or is otherwise important, then the two operand tile sets
can be accordingly materialized on different shared-nothing
nodes in advance.

Figure 15. Worst case join scenario on 2-D arrays.

Figure 16. Worst case join graph with auxiliary edges.

Hence, preparatory analysis of the query workload can
yield exact data distribution hints. We are currently re-
searching on ways to determine optimal distribution
schemes. Even within a connected subgraph there is par-
allelization potential. Processing a connected graph com-
ponent can be parallelized locally across the cores of a com-
pute node; the shared-all situation in particular allows shar-
ing of buffers.

Coming back to the extra reads imposed by the traversal,
we can take advantage of the path information for buffer
management. This is possible because the path contains
information about how often a tile load is required. Our im-
plicit assumption so far was that we want to hold only one
operand partition in RAM at a time, corresponding to an in-
put buffer of size 1 on each operand. However, by establish-
ing a histogram of each partition’s use in a given path we
can obtain the number of buffers needed to not reload any
partition ever. Even more sophisticated, given operand
buffers of some size NA and NB the path allows deducing the
number of reloads required. This way, a fine-grain tradeoff
between main memory and performance is possible.

Currently all partitions, regardless of their size, are con-
sidered to bear the same costs for loading. While this is a
good first approximation for a well-tuned array database
[22], this assumption might be revisited. In particular for
cases where some partitions have to be fetched over a net-
works the cost weights associated to each node will need to
be individual.

Further optimizations are currently under investigation,
exploiting the degree of freedom given by the nondetermin-
ism of path construction.

VII. EVALUATION

We have implemented the array join in the commercial
variant of the rasdaman Array DBMS, rasdaman enterprise.
We discuss this implementation and compare it against
alternatives. The fully naïve approach to joining two arrays

would be to materialize both in main memory. While this
guarantees minimal disk reads it requires substantial mem-
ory because, for some size S of an operand, the memory re-
quired is 3S. Hence, this does not scale to array sizes beyond
main memory.The semi-naïve approach taken by rasdaman
(both community, the open-source version, and enterprise)
fully materializes the first operand and then iterates in a tile-
by-tile fashion over the second operand (recall that
partitions in rasdaman are called tiles). While this reduces

the memory amount from 3S to S+ 1+ 2, where i are tile
sizes, there remains a main memory limit on the array size
on principle. Further, this was an ad-hoc implementation
without the conceptual fundament established in this paper.
Our new approach overcomes this by requiring only a small,
plannable number of tiles to be materialized at any moment
in time, thereby overcoming the main memory sizing
barrier. Notably, this join is non-blocking: result array tiles
can be streamed upwards as they become available.

We have measured the memory usage of rasdaman’s
execution tree when performing a simple binary operation
(in this case addition), between two array objects under
different partitioning schemes. First we have used the semi-
naïve method described above, and then the new approach
proposed in this paper. Both arrays represent red-green-blue
images of 18000 by 18000 pixels of type (byte,byte,byte),
with a size of approximately 1GB each.

In the first iteration, both arrays have been partitioned
using the same scheme: regular tiling [12]. Figure 17.
shows the results obtained when the arrays have been
partitioned into 4 tiles of approximately 250MB each. The
loading sequence of the tiles is shown for each step of the
execution. The memory used by the resulting tiles (when
performing addition between tiles of each object, the result
is written in a separate tile) is also accounted for. However,
as soon as the execution step ends, the resulting tile is
passed on (either to the next node in the tree if existing or, in
our case, to the client) and corresponding memory is freed.

The same operation, this time executed following the
graph approach, uses only half of the memory, without
performing extra read operations. Moreover, after each
execution step, memory usage drops to 0, which indicates
that we could execute all the steps in parallel without
imposing a shared-memory architecture. The execution
steps as well as the memory usage are shown in Fig. 18.

Tile sizes of 250MB are not typical for our applications,
however they have been chosen so that the loading sequence
can be followed easily in our assessment. In a more practic-
ally relevant example, the same objects have been partition-
ed into regular tiles of 20MB each. Fig. 19 shows the mem-
ory usage in the semi-naïve case, which corresponds to our
expectations: first operand is fully materialized (so around
1GB of memory), and the second one is loaded tile by tile to
produce the result. Fig. 20 displays the memory usage for
the same operation, executed following the graph approach,
and shows that the maximum amount of memory that is
used is below 70MB (which corresponds to roughly two
operand tiles + one resulting tile).

Our second experiment targeted the same objects, but
partitioned into tiles along perpendicular dimensions (sim-
ilar to the example in Fig. 15). This means that every tile of

the first object intersects every tile of the second object,
which implies that every combination of tiles will need to be
in memory at some point. Fig. 21 shows the behavior of the
semi-naïve algorithm. By comparison, the graph based
algorithm uses less memory, however it performs an extra
read operation (Fig. 22; A1 is read as step 1, discarded at
step 2 and read again at step 8), thus it takes longer.

 In order to allow a configurable trade-off between
the number of extra reads and maximum memory usage, a
buffer that can hold a given number of tiles is implemented.
In our case, if we allow the buffer to hold tile A1 between
steps 3 and 7, the extra read is not required anymore; results
are shown in Figure 23. . Thus, one may choose, depending
on the available hardware, a buffer size that ensures a
balance between execution time and memory consumption.

In summary, we see that by allowing a modest, control-
able amount of extra reads we obtain a scalable algorithm
which provides extra information useful for a priori buffer
management parallelization.

Figure 17. Memory usage: semi-naïve join, tile size 250MB

Figure 18. Memory usage: graph-based join, tile size 250MB

Figure 19. Memory usage: semi-naïve join, tile size 20MB

Finally, we observe that joining two arrays with highly
divergent partitioning schemes will result in an array that
has a very fine partition granularity. In the worst case, arrays
with |EA| and |EB| partitions, respectively, will yield an array
with |EA|*|EB| partitions. This may lead to undesirably small
partitions. To avoid this, a repartitioning of the result object
may be advisable before continuing query evaluation.

Figure 20. Memory usage: graph-based join, tile size 20MB

Figure 21. Memory usage: semi-naïve join, perpendicular tiles

Figure 22. Memory usage: graph-based join, perpendicular tiling, no buffer

Figure 23. Memory usage: graph-based join, perpendicular tiling, with

buffer

VIII. SUMMARY

Increasingly it is recognized that the effort of reorganiz-
ing arrays during ingestion pays off substantially with re-
trieval. With this new degree of freedom, though, the align-
ment problem in array joins occurs even more frequently.

Combining two arrays into a new one constitutes an
array join, a common operation class in Array DBMSs. In
this paper, we have proposed a method for finding an
efficient traversal on the partitions of the participating
arrays. Efficiency is important in face of the large volume
even single arrays can comprise. To the best of our
knowledge this problem has not been addressed before.

We map the arrays to a bipartite graph where nodes cor-
respond to partitions and edges indicate that the two partit-
ions connected overlap, hence have to be combined during
join evaluation. From this graph the array join algorithm de-
duces the pairings between partitions and finds a minimal
sequence of partition accesses. As our graph approach is ag-
nostic of the directions of overlap, this method works for
any number of dimensions. The traversal path allows easily
determining the number of partition buffers necessary to
prevent multiple reads. Conversely, when a certain number
of partition buffers is made available for join processing
then the traversal path naturally induces an eviction strategy.
Furthermore, the graph approach provides valuable infor-
mation for mixed shared-nothing / shared-all parallelization.

We expect useful insights from the manifold operational
rasdaman installations which, in the case of the European
Space Agency, already exceed 130 Terabyte of satellite im-
age timeseries datacubes [5]; in the intercontinental Earth-
Server initiative, intercontinental federations between large-
scale satellite and climate data centers are being established
with datacubes exceeding 1 Petabyte each. Being able to
join such datacubes efficiently will be of critical importance.

ACKNOWLEDGEMENT

Part of this work has been supported through European
funded projects EarthServer and PublicaMundi supported by
the European Commission. Nikolce Kolev’s elaboration of
examples is appreciated.

REFERENCES

[1] P. Baumann et al.: The multidimensional database system
RasDaMan. ACM SIGMOD Record 27(2)1998

[2] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: Spatio-
Temporal Retrieval with RasDaMan. Proc. VLDB’99, September 7-
10, 1999, Edinburgh, Scotland, pp. 746-749

[3] P. Baumann, S. Feyzabadi, C. Jucovschi: Putting Pixels in Place: A
Storage Layout Language for Scientific Data. Proc. IEEE ICDM
Workshop on Spatial and Spatiotemporal Data Mining (SSTDM-10),
December 14, 2010, pp. 194 – 201

[4] P. Baumann, S. Holsten: A Comparative Analysis of Array Models
for Databases. International Journal of Database Theory and
Application, 5(1)2012, pp. 89 – 120

[5] P. Baumann, P. Mazzetti, J. Ungar, R. Barbera, D. Barboni, A.
Beccati, L. Bigagli, E. Boldrini, R. Bruno, A. Calanducci, P.
Campalani, O. Clement, A. Dumitru, M. Grant, P. Herzig, G.
Kakaletris, J. Laxton, P. Koltsida, K. Lipskoch, A.R. Mahdiraji, S.
Mantovani, V. Merticariu, A. Messina, D. Misev, S. Natali, S.

Nativi, J. Oosthoek, J. Passmore, M. Pappalardo, A.P. Rossi, F.
Rundo, M. Sen, V. Sorbera, D. Sullivan, M. Torrisi, L. Trovato,
M.G. Veratelli, S. Wagner: Big Data Analytics for Earth Sciences:
the EarthServer Approach. Intl. Journal of Digital Earth, 2015

[6] P. Baumann: A Database Array Algebra for Spatio-Temporal Data
and Beyond. Workshop on Next Generation Information Technolog-
ies and Systems (NGITS), 1999, Zikhron Yaakov, Israel, LNCS
1649, Springer Verlag, pp. 76 – 93

[7] P. Baumann: On the Management of Multidimensional Discrete
Data. VLDB Journal, Special Issue on Spatial Database Systems,
1999, pp. 401-444

[8] J.B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N.
Polyzotis, S. Brandt. SciHadoop: Array-based Query Processing in
Hadoop. Proc. 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 66:1–66:11

[9] Y. Cheng, F. Rusu. EXTASCID: An Extensible System for the
Analysis of Scientific Data (poster). Extremely Large Databases
(XLDB), Standford, California, USA, September 10 – 13, 2012

[10] EarthServer. www.earthserver.eu, seen on 2015-10-05

[11] L. Euler: Solutio problematis ad geometriam situs pertinentis.
Commentarii academiae scientiarum Petropolitanae, 1741

[12] P. Furtado, P. Baumann: Storage of Multidimensional Arrays Based
on Arbitrary Tiling. Proc. IEEE ICDE International Conference on
Data Engineering, Sydney, Australia, March 23 – 26, 1999

[13] C. Hierholzer, C. Wiener: Über die Möglichkeit, einen Linienzug
ohne Wiederholung und ohne Unterbrechung zu umfahren.
Mathematische Annalen 1873, 6: 30–32

[14] M.A. Hong, W.M. Olson, M. Ubell, M. Stonebraker: Query
Processing in a Parallel Object-Relational Database System. Data
Engineering: 3, 1996

[15] J. Melton, P. Baumann: Information technology – Database
languages – SQL – Part 15: Multi-Dimensional Arrays (SQL/MDA).
ISO/IEC JTC1/SC32/WG3 (in preparation)

[16] D. Misev, P. Baumann: Extending the SQL Array Concept to Supp-
ort Scientific Analytics. Proc. Scientific and Statistical Database
Management (SSDBM), 2014, Aalborg, Denmark, paper #10

[17] D. Misev, P. Baumann: Enhancing Science Support in SQL. Proc.
Workshop on Data and Computational Science Technologies for
Earth Science Research (co-located with IEEE BigData), Santa
Clara, US, October 29, 2015

[18] Rasdaman QL Guide. www.rasdaman.org, seen on 2015-10-05

[19] S. Sarawagi, M. Stonebraker. Efficient Organization of Large Multi-
dimensional Arrays. ICDE, Washington, USA, 1994, pp. 328-336

[20] N.n.: Seven Bridges of Königsberg. Wikipedia,
http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg,
seen on 2015-10-05

[21] E. Soroush, M. Balazinska, D. Wang: Arraystore: a Storage Manag-
er for Complex Parallel Array Processing. ACM SIGMOD, 2011

[22] S. Stancu-Mara, P. Baumann, V. Marinov: A Comparative
Benchmark of Large Objects in Relational Databases. Proc. IDEAS
2008, Coimbra, Portugal, November 10 - 13, 2008

[23] SciDB. www.scidb.org, seen on 2015-10-095

[24] W. Teng et al: Bridging the Digital Divide to Enhance Access to and
Use of NASA Data for the Hydrological Community. 11th Earth
Science Data Systems WG (ESDSWG), Nov. 13 – 15, 2012

[25] C.D. Tomlin: Geographic Information Systems and Cartographic
Modeling. Prentice Hall 1990

[26] Y. Zhang, M. Kersten, S. Manegold. SciQL: Array Data Processing
Inside an RDBMS. Proc. ACM SIGMOD, 2013

[27] R. O. Obe, L. S. Hsu: PostGIS in Action. Manning Pubs., 2011

[28] S. Pramanik, D.Ittner: Use of Graph-Theoretic Models for Optimal
Relational Database Accesses to Perform Join. ACM ToDS, March
1985, pp. 57-74.

http://www.earthserver.eu/
http://www.rasdaman.org/
http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
http://www.scidb.org/

