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Abstract—High Performance Computing (HPC) has been a
dominated technology used in seismic data processing at the
petroleum industry. However, with the increasing data size and
varieties, traditional HPC focusing on computation meets new
challenges. Researchers are looking for new computing platforms
with a balance of both performance and productivity, as well as
featured with big data analytics capability. Apache Spark is a new
big data analytics platform that supports more than map/reduce
parallel execution mode with good scalability and fault tolerance.
In this paper, we try to answer the question that if Apache
Spark is scalable to process seismic data with its in-memory
computation and data locality features. We use a few typical
seismic data processing algorithms to study the performance and
productivity. Our contributions include customized seismic data
distributions in Spark, extraction of commonly used templates
for seismic data processing algorithms, and performance analysis
of several typical seismic processing algorithms.

Index Terms—Parallel Computing; Big Data Analytics; Seismic
Data; Stencil Computing;

I. INTRODUCTION

Petroleum is a traditional industry where massive seismic
data sets are acquired for exploration using land-based or
marine surveys. Huge amount of seismic data has already been
generated and processed for several decades in the industry,
although there was no the big data concept at that time. High
Performance Computing (HPC) has been heavily used in the
industry to process the pre-stack seismic data in order to create
3D seismic property volumes for interpretation.

The emerging challenges in petroleum domain are the
burst increase of the volume size of acquired data and high-
speed streaming data from sensors in wells that need to be
analyzed on time. For instance, the volume size of high
dimension such as 3D/4D seismic data and high density
seismic data are growing exponentially. The seismic data
processing becomes both computation- and data- intensive
applications. The traditional HPC programming model is good
at handling computation-intensive applications, however, with
the continuously increasing sizes and varieties of petroleum
data, HPC was not designed to handle the emerging big data
problems. Moreover, HPC platforms has been an obstacle for
most geophysicists to implement their algorithms on such
platforms directly, who demand a productive and scalable
platform to accelerate their innovations.

In many the data- and technology-driven industries, big
data analytics platforms and cloud computing technologies
have made great progress in recent years toward meeting
the requirements of handling fast-growing data volumes and
varieties. Hadoop [1] and Spark [2] are currently the most
popular open source big data platforms that provide scalable
solutions to store and process big data, which deliver dynamic,
elastic and scalable data storage and analytics solutions to
tackle the challenges in the big data era. These platforms allow
data scientists to explore massive datasets and extract valuable
information with scalable performance. Many technologies
advances in statistics, machine learning, NoSQL database,
and in-memory computing from both industry and academia
continue to stimulate new innovations in the data analytics
field.

Geophysicists need an ease-to-use and scalable platform
that allows them incorporate the latest big data analytics
technology with the geoscience domain knowledge to speed
up their innovations in the exploration phase. Although there
are some big data analytics platforms available in the market,
they are not widely deployed in the petroleum industry since
there is a big gap between these platforms and the special
needs of the industry. For example, the seismic data formats
are not supported by any of these platforms, and the machine
learning algorithms need to be integrated with geology and
geophysics knowledge to make the findings meaningful.

Are these big data analytics platforms suitable in the
petroleum industry? Because of lack of domain knowledge,
these platforms have been difficult to use in some traditional
industry sectors such as petroleum, energy, security, and
others. They need to be integrated and customized to meet
the specific requirements of these traditional industry sectors.
The paper targets to discuss the gap between the general
functionality of the big data analytics platforms and the special
requirements from the petroleum industry, and to experiment a
prototype of Seismic Analytics Cloud platform (SAC for short)
[3, 4]. The goal of SAC is to deliver a scalable and productive
cloud Platform as a Service (PaaS) to seismic data analytics
researchers and developers. SAC has two main characteristics:
one is its scalability to process big seismic data, and the other
is its ease-to-use feature for geophysicists. In this paper, we
describe our implementation of SAC, experiment with a few



typical algorithms in seismic data analytics and computations,
and discuss the performance in details.

II. RELATED WORK

The big data problem requires a reliable and scalable cluster
computing or cloud computing support, which has been a
longstanding challenge to scientists and software developers.
Traditional High Performance Computing (HPC) researches
have put significant efforts in parallel programming models in-
cluding MPI [5], OpenMP [6], and PGAS languages [7, 8, 9],
compiler parallelization and optimizations, runtime support,
performance analysis, auto-tuning, debugging, scheduling and
more. However, these efforts mostly focused on scientific
computing, which are computation-intensive, while big data
problems have both computation- and data-intensive chal-
lenges. Hence, these traditional HPC programming models
are not suitable to big data problems anymore. Besides
scalable performance, tackling big data problems requires a
fault-tolerant framework with high-level programming models,
highly scalable I/O or database, and batch, interactive and
streaming tasks support for data analytics.

MapReduce [10] is one of the major innovations that created
a high-level, fault-tolerant and scalable parallel programming
framework to support big data processing. The Hadoop [1]
package encloses Hadoop Distributed File System (HDFS),
MapReduce parallel processing framework, job scheduling
and resource management (YARN), and a list of data query,
processing, analysis and management systems to create a
big data processing ecosystem. Hadoop Ecosystem is fast
growing to provide an innovative big data framework for big
data storage, processing, query and analysis. Seismic Hadoop
[11] combines Seismic Unix [12] with Cloudera’s Distribution
including Apache Hadoop to make it easy to execute common
seismic data processing tasks on a Hadoop cluster. In [13],
[14] and [15], some traditional signal processing and migration
algorithms are already implemented on MapReduce platform.
[16] built a large-scale multimedia data mining platform by
using MapReduce framework, where the processing dataset is
similar to seismic image. However, MapReduce only supports
batch processing and relies on HDFS for data distribution and
synchronization, which has significant overloads for iterative
algorithms. Furthermore, there is no support for streaming
and interactive processing in MapReduce, which becomes
the biggest hole for supporting time-sensitive data processing
applications.

To reduce the overhead of shuffling data into HDFS and
to support more widely used iterative algorithms, there raised
several in-memory computing frameworks. Apache Flink [17]
is a fast and reliable large-scale data processing engine, which
is originally coming from Stratosphere [18]. It provides in-
memory data sets, query language, machine learning algo-
rithms and interfaces handling streaming data. Besides pro-
viding batch processing function, Flink is good at incremental
iterations by pipelining data in an execution engine, which
makes it suitable for most machine learning algorithms. Spark
[19] is a quick-rising star in big data processing systems,

which combines the batch, interactive and streaming pro-
cessing models into a single computing engine. It provides
a highly scalable, memory-efficient, in-memory computing,
real-time streaming-capable big data processing engine for
high-volume, high-velocity and high-variety data. Moreover, it
supports high-level language Scala that combines both object-
oriented programming and functional programming into a sin-
gle programming language. The innovative designed Resilient
Distributed Dataset (RDD) [20] and its parallel operations
provide a scalable and extensible internal data structure to
enable in-memory computing and fault tolerance. There is a
very active, and fast-growing research and industry community
that builds their big data analytics projects on top of Spark.

However, all these frameworks are built for general propose
cases and are focused on data parallelism with improved
MapReduce model, and there is no communication mechanism
between workers, which does not fit to some iterative seis-
mic algorithms requiring frequent data communication among
workers. Both traditional seismic data storage and processing
algorithms need big changes to run on MapReduce platform.

With the growing exponentially of the seismic data volumes,
how to store and manage the seismic data becomes a very
challenge problem. The HPC applications need to distribute
data to every worker node, which will consume more time
on data transferring. The trend toward big data is leading
to transitions in the computing paradigm, and in particular
to the notion of moving computation to data, also called
near-data-processing(NDP) [21]. In Data Parallel System such
MapReduce [22], clusters are built with commodity hardware
and each node takes the roles of both computation and storage,
which makes it possible to bring computation to data. In
[23], it presented an optimized implementation of RTM by
experiments with different data partitioning, keeping data
locality, and reducing data movement. In [24], it proposed a
remote visualization solution by introducing GPU computing
into cluster, which could overcome problems of dataset size by
reducing data movements to local desktop. In [25], it evaluated
the suitability of MapReduce framework to implement large-
scale visualization techniques by combining data manipula-
tion and data visualization system on cluster. Besides binary
seismic data, there are huge amount semi-structured data and
metadata generated at seismic data acquisition and processing.
There are some obvious limitations of traditional RDBMS to
handle this kind of big data; RDBMS is not flexible to handle
different types of data, and there are also scalability and per-
formance limitations on RDBMS. The NoSQL database[26]
is designed to be more suitable in such a scenario. Cassandra
[27] is a distributed NoSQL database designed to handle
large amount of data that could achieve linear scalability
and fault-tolerant ability without compromising performance.
MongoDB [28] is a document-oriented NoSQL database that
casts focus on flexible data model and highly scalability. Redis
[29] is a data structure server that provides key-value cache
and storage, and it works with in-memory dataset thus could
achieve outstanding performance. Based on the characteristics
of seismic data, Cassandra could be used to store intermediate



data shared by all workers.
With the increasing volume size of seismic data, the al-

gorithms applied on data also become more sophisticated to
extract valuable information. Some advanced machine learning
algorithms are already used in this area. [30] used artificial
neural network (ANN) to predict sand fraction from learning
multiple seismic attributes such as seismic impedance, am-
plitude and frequency. In [31], it set up a model by feeding
five seismic attributes and the reservoir thickness to train
Support Vector Machines (SVM) and then used it to predict
the reservoir thickness. [32] used meta-attributes to train multi-
layer neural networks and evaluated the effectiveness of the
new generated seismic fault attribute. [33] used Back Propa-
gation Neural Network (BPNN) for the automatic detection
and identification of local and regional seismic P-Waves.
Petuum [34] is a distributed machine learning framework that
is focused on running generic machine learning algorithms on
big data sets and simplifying the distributed implementation
of programs. Based on characteristics of machine learning al-
gorithms, Petuum provides iterative-convergent solutions that
quickly minimize the loss function in a large-scale distributed
cluster. Since these frameworks such as Petuum and Graphlab
[35] are designed specially for machine learning algorithms,
they could get better performance comparing with other gen-
eral purpose MapReduce frameworks that emphasize on con-
sistency, reliability and fault tolerance, but their programming
models are not easy to use comparing with MapReduce.

In summary, although there are already many research
projects trying to solve the big data problem, there is still no
solution designed specific to seismic data. The MapReduce
platform and its predecessors are too common to support
complicated seismic algorithms, while some other platforms
either emphasize on performance of computation or model
optimization in narrow specific area. To make it easy for
geophysicists and data scientists processing and analyzing big
petroleum data, a new platform is needed by incorporating
the advances of big data research into the industry. Such
a platform should not only be capable of processing big
data efficiently and running advanced analytics algorithms,
but also should achieve fault tolerance, good scalability and
usability. Seismic data management and distribution need to
be implemented in order to allow geophysicists to utilize the
platform. Moreover, the common-used seismic computation
templates and workflow would be very useful to simplify their
work.

III. IMPLEMENTATION

SAC is built on Spark to boost performance by utilizing
in-memory computing model. In order to make it easy to use
by geophysicists, we developed some high level seismic data
processing templates to facilitate the user programming efforts.

Figure 1 shows the overall software stack used in SAC.
In this diagram, the operating systems at the first level from
bottom could be Unix-like or Windows system running on the
virtual machines or bare metals. Above the OS layer, there
is a layer that provides compiling and running environment,

which includes JRE/JDK, Scala, Python and other native
libraries such as OpenCV [36], FFTW [37] etc. In the third
layer, there are some common components installed including
HDFS, Mesos [38] and YARN [1] used for the data storage
and resource scheduling. HDFS is a distributed file system
delivered in Hadoop that provides fault-tolerance and high
throughput access to big data sets. In SAC, HDFS is used for
storing original binary seismic data. The metadata and inter-
mediate data such as seismic attributes are stored in Cassandra
database. Resource management in cluster is very important
for application scheduling and load balance, and in SAC,
Standalone, Mesos and YARN are all supported. In the fourth
layer from bottom, it includes the actual computation compo-
nents: signal and image processing libraries with Java/Scala
interfaces; Breeze [39] is a set of libraries for machine learning
and numerical computing written in Scala and Java. FFTW
is a C subroutine library for computing the Discrete Fourier
Transform (DFT) with one or more dimensions in both real
and complex data format. There are already some Java FFTW
wrappers make it could be used on JVM without giving up
performance. SAC chose Spark as the computation platform
due to its performance achieved with in-memory computation
and its fault tolerance features. The main work of this paper
is focus on the second and third layer from top. Seismic
Analytics Cloud layer is used for providing SDK and running
environment for client applications. SAC Framework plays the
most important role in this cloud platform, and it is the bridge
of user’s applications and running environment on cluster. The
template-Based framework provides common programming
models for domain specific experts, and the workflow frame-
work connects pieces of algorithms or models into job chains,
and run them following the workflow sequence. Visualization
is important for user to view results and to generate useful
information intuitively. Seismic Applications on the top of
stack are mainly developed by end users. There is an user
friendly web interface provided by SAC, on which users could
view datasets, programming and testing algorithms or running
workflow in a convenient way by drag-and-drop of widgets.

Fig. 1: The Software Stack of Seismic Analytics Cloud Plat-
form



A. Seismic RDD

Resilient Distributed Datasets (RDDs) [20] is core concept
proposed by Spark, which is a fault-tolerant collection of
elements that can be operated in parallel. RDDs [40] support
two types of operations: transformations, which create a new
dataset from the existing one, and actions, which return a value
to the driver program after running the defined computation
on the dataset. Even in parallel programming on cluster, the
program still consists of data structure and algorithms. Spark
uses the RDD as a common data structure that distributed in
multi-nodes, and provides some typical operations as algo-
rithm frameworks in functional language style so that the user
could plug in his own algorithms and apply them on RDD.
Comparing with traditional parallel programming models such
as MPI and OpenMP, the programming on Spark is much
simpler. But for geophysicists or data scientists who have
no much idea about RDD and functional language, there are
still some tedious jobs to do. SAC tried to simplify work
by introducing Seismic RDD and Template. Users only need
to configure some parameters: the dataset need to process,
input and output type of algorithms, then write a piece of
codes, after that SAC will generate Seismic RDD, create
the template, merge user’s codes and run them automatically.
Seismic RDD is built from SeismicInputFormat, and besides
the basic operations provided by Spark, Seismic RDD also
provides some other features: the fine-grain functions on pixel
or trace inside each split, transferring RDD from default
inline direction to other directions automatically basing on
configuration, overiding some operators for easily used by
high level applications. The most advantage of the RDD is
caching most frequently used data in memory, thus improving
performance of some iteration algorithms drastically.

B. Seismic Data Computation Templates

Essentially, seismic data is a 2D plane or 3D volume
composed by traces. The data type of trace data is Float type
in IEEE floating-point format or IBM floating-point format.
Classical signal processing or image processing algorithms
have been widely used for processing seismic data. The grain
size of input/output data could be sample point, trace, 2D plane
or 3D volume. The relationship between volume size of input
and the other one of output is shown in Figure 2, in which solid
circle (input data) or hollow circle (output) indicates one point,
one trace, one plane or even one volume. The relationship
could be 1 to 1 (Figure 2 a), N to 1 (Figure 2 b) or 1 to
N (Figure 2 c). In some case such as median filter, there is
overlap between each input split, which could be treated as
a special case of 1 to 1, but the overlap edges need to be
considered in data distribution. After study of the popular open
source seismic data processing packages, signal processing and
image processing packages such as SU, Madagascar, JTK [41],
Breeze, OpenCV, ImageMagick etc., we define some typical
templates in SAC: Pixel pattern, which uses the sub-volume or
one pixel as input and output one pixel; Trace Pattern, which
uses one trace or several traces as input and output one or
more traces; Line pattern, which treats one line or more lines

as input and one line or more lines as output; SubVolume
pattern, which feeds user’s application with a sub-volume and
get output from it in sub-volume format. These templates could
handle most cases with one seismic data set, but it could
not handle other cases with two or more seismic data sets
as input because map/flatMap functions can only be applied
on one RDD. For the case with two RDDs, we can merge them
into one RDD with zip function, and then apply map/flatMap
functions on the combined RDD.

Beside these transformations, there are still some other
summary operations or actions in Spark such as count, stats
or collect etc. Those functions have no definite templates, but
are very useful. So SAC provides a free-style template by
passing RDD directly to user’s application, on which users
could call any transformations and actions as required. For
some sophisticated models that are difficult to split into sub-
tasks or have multiform of input or output, free-style template
is also effective.

Fig. 2: Relationship of Input and Output in Seismic Data
Processing

IV. EXPERIMENTS

To evaluate the performance of SAC, we setup the ex-
periment environment, develop the SAC framework and run
some typical seismic applications on SAC. There are three
main layers in SAC: the low-level runtime environment, SAC
framework as the middleware and application development in-
terfaces at up-level. The middleware layer of SAC was already
discussed in the pervious section. The runtime environment is
the base that SAC builds on, and the application development
interfaces serve as the entry for users. We chose three typical
seismic volume computation algorithms: Fourier Transform,
Hilbert Transform, and Jacobi stencil computations as our
experiments.

The cluster used for conducting experiments consists of
25 nodes, in which one is the management node and other
24 nodes are computation nodes. Each node in this cluster



was equipped with Intel Xeon E5-2640 Sandy Bridge CPU
(2.5GHz, 12 Cores or 24 Cores with Hyper-threading support),
64GB DDR3 memory and all nodes are inter-connected with
1GB ethernet. Each node has its own local disk, and also could
access disk array through NFS. Following the architecture
stated in previous section, we install CentOS 6.5 (Distributed
by Redhat) and Oracle JDK 1.8.0 40 on each node. Hadoop
2.2.0, Spark 1.2.1 and other related libraries are also installed
on each node. In the configuration of HDFS, the management
node was configured as NameNode and other 24 computation
nodes as DataNodes. It is similar in Spark: the management
node is Master and other computation nodes are Workers.
Cassandra was installed on all 24 computation nodes and the
first four nodes of them were selected as seed nodes.

The public sample seismic dataset Penobscot [42] was
selected as experiment data. The original format of Penobscot
dataset is SEGY, and to make it easily processed with Spark,
we transfer it into two files: one xml file that saves meta
data, and another binary data file with dimension size of
600x481x1501 stores actual 3D data samples. The volume
size of the original data file is about 1.7GB, which is not
big enough comparing with datasets currently used in oil &
gas industry, so we use it synthesize a new 100GB file for
verifying algorithms and models on SAC. For some extensive
time consuming algorithms, we still use the 1.7GB binary file
as test data. Both of xml file and data file are stored on HDFS,
so that every node could access them and utilize data locality.
The intermediate results are stored in Cassandra basing on
requirement and final results are persisted back to HDFS.

A. Fourier & Hilbert Transformation

In the signal and image processing area, Fourier transform
(FT) is the most commonly used algorithm. The signal in
time domain was decomposed into a series of frequencies
through FT, and in the frequency domain, many problems such
as filters are easier to perform comparing with in the time
domain. Fast Fourier transform (FFT) [43] is an algorithm to
compute the discrete Fourier transform (DFT) and its inverse
by factorizing the DFT matrix into a product of sparse (mostly
zero) factors. There are different implementations of FFT,
such as FFTW, OpenCV, Kiss FFT, Breeze etc. FFTW[44]
emphasizes performance by adapting to the hardware such
as SIMD instructions in order to maximize performance,
while Breeze aims to be generic, clean and powerful without
sacrificing (much) efficiency. Breeze provides more concise
interfaces of 1D/2D Fourier transforms and filtering functions,
so we use FFT function in Breeze as the test case by applying
it both in sequential codes and parallel codes running on Spark.

The Hilbert transform [45] is important in the field of signal
processing where it is used to derive the analytic representation
of a signal. A great number of geophysical applications
consist in close relation of the Hilbert transform to analytic
functions of complex variable [46]. Hilbert transform approach
now forms the basis by which almost all amplitude, phase
and frequency attributes are calculated by today’s seismic
interpretation software [47]. JTK already provided the Hilbert

transform filter class, so we use it as the test case by apply
Hilbert transform filter on each trace of input seismic data set.

B. Jacobi Stencil Computation

Stencil operations are the most common computations used
in seismic data processing and reservoir simulation in oil &
gas industry, and most of codes in this domain were written
in MPI or OpenMP programming models running on large
scale clusters or large-scale SMP. MPI codes typically involve
complicated communications with significant programming ef-
forts and could not handle fault tolerance very well. Although
OpenMP makes it easy to parallelize sequential codes on
SMP, with increasing size of volume of seismic data, SMP
encounters the problem of caching large data volume and
scalable performance issue.

We choose Scala as the programming language for exper-
iments and develop four applications for Jacobi stencil com-
putation: Sequential codes, Parallel codes using broadcasting
variable, Parallel codes using Cassandra database and Parallel
codes with boundary RDD, in which sequential codes run on
single core and parallel codes in Spark run on the whole
cluster. For the Sequential codes, we just split the big data
file into small partitions and each partition includes several
inlines, then use 3 nested loops to compute average value of
26 (3x3x3 sub-volume) neighbor samples. After computation,
results of each partition will be saved into the temporary
file to be used as input of next iteration. For the Parallel
codes with broadcasting variable, the large input dataset is
distributed to all active nodes in the whole cluster as RDD,
then each node could get its own data section and apply
map function (computation part) on it. Since the boundary
data is need for Jacobi kernel and there is no communication
interfaces between mappers, the boundary planes of each split
are collected as a big variable and broadcasted to all nodes by
driver node after one iteration, then each node could fetch
new boundary Inlines in next iterative computation. After
implementation of Parallel codes using broadcasting variable,
we found the performance of collecting data is very bad, so we
design new Parallel codes using Cassandra DB and boundary
RDDs to exchange boundary data and to avoid collecting data
in each iteration.

The data flow of parallel methods (broadcast variables and
boundary RDD) are shown in Figure 3: each number denotes
one plane of seismic data. The big seismic data file is stored
on HDFS, which will be divided into small partitions and send
to each worker node by driver node. Using broadcast variables
shown in top half of diagram, the driver node needs to collect
boundary planes from every node, which will take more time
on network communication. The solution of using boundary
RDDs is shown in below half diagram, in which boundary
RDDs are filtered from result RDD, but they need repartition
and resort for alignment and then merge with original RDD
to form a new RDD for next iteration. In the programmer
view of sharing data, sharing with Cassandra database is
similar to broadcast variables of Spark, but the underline data
communication is distinct.



Fig. 3: Data Flow of Jacobi Parallel Codes

V. PERFORMANCE DISCUSSION

There are a lot of tools used for measuring performance of
the application running on single node or on cluster. In order to
make some deep analysis to find the performance bottleneck,
we used several performance tools to collect the detailed
performance metrics such as CPU usage, memory usage, disk
I/O and network communication. Spark itself provides an web
UI for monitoring of resource usage of the whole cluster, task
running status and detail information of each stage in task,
which emphasizes more on application profile and execution
time. Ganglia [48] is a scalable distributed monitoring system
for high-performance computing systems such as clusters and
Grids, which is focus on utilization of resources on the cluster.
Nigel’s performance Monitor (nmon) could collect miscella-
neous metrics information on each node, and NMONVisualizer
could visualize the information for deep analysis. Since Spark
framework runs on Java Virtual Machine (JVM), there are
also several tools from Oracle Java Development Kit (JDK)
that provide information within the JVM, such as Garbage
Collection (GC) log, Java Flight Recorder, and heap dumps.
We use wall clock to get total running time and execution time
of each stage for sequential codes, and use Spark web monitor
UI to get execution time of total job and running information
of each stage for parallel codes running on Spark. Each node
will launch nmon to collect runtime information at the same
time of application starts, and then all of these data are merged
together, feeding to NMONVisualizer for deep study.

A. Performance Analysis of Hilbert Transformation Filter

Figure 4 shows the speedup information of Hilbert transfor-
mation filter with parallel codes on Spark to sequential codes.
There is a positive correlation between number of cores and
performance in almost each split. The performance boost from
288 cores to 576 cores is not obvious, because 576 cores run
in hyper-thread mode. The best speed up is located at 10 lines
per split with 576 cores, and the performance decrease slightly
after increasing split size to 30 lines or 100 lines. Figure
5 shows the resource utilization of Hilbert transform filter
running with 10 lines per split and 576 cores, in which CPU
usage quickly ramped up to 95% and kept steady till the end
of the job. There are some small fluctuations due to reading

data from network, and the big fluctuations related with system
time came along with significant longer GC pauses. Figure 6
shows the same data running with 30 lines per split and 288
cores, in CPU usage of which there are 4 peak bands that mean
4 sub-tasks and there is one valley at the end where the entire
job is finalizing and waiting for stragglers. Figure 7 shows
resource usage on another node, on which 5 tasks have been
run. In the case of 30 lines per split, each sub-task will take
more time and not all nodes get same number of sub-tasks to
run, so there are some nodes need to wait all tasks finished
at end. The utilization of CPU is better in 10 lines per split,
so with same resources, performance of 10 lines per split is
better than the one of 30 lines per split.

Fig. 4: Speedup of Hilbert Transform Filter Codes

(a) CPU Usage

(b) Network Usage

Fig. 5: Resource Usage of Hilbert Transform Filter with 10
Lines per Split and 576 Cores

B. Performance Analysis of FFT

Figure 8 shows the speedup information of FFT parallel
codes on Spark to sequential codes. There is a positive correla-



(a) CPU Usage

Fig. 6: Resource Usage of Hilbert Transform Filter with 30
Lines per Split and 288 Cores (1)

(a) CPU Usage

Fig. 7: Resource Usage of Hilbert Transform Filter with 30
Lines per Split and 288 Cores (2)

tion between number of cores and performance in almost each
sub-volume size. The performance boost from 288 cores to
576 cores is not significant, which means we have bottleneck
comes from other components of the system. Similar with
Hilbert transformation filter, FFT codes in this case are also
computation-intensive: every pixel with its 26 neighbor pixels
in 3x3x3 pattern and every one with its 728 neighbors in 9x9x9
pattern are used for FFT. Figure 9 and 10 show resource usage
of FFT codes with sub-volume size 3x3x3 that run with 576
cores. The overall percentage of CPU utilization is good except
some spikes that mean GC of JVM. At the end of running
period, there is a section of waiting time. From Figure 10,
the disk is busy on DataNode of HDFS at that time; For the
100GB dataset with 36000 inlines, there are about 12000 sub-
tasks need to write back results to HDFS, so it will take about
3 minutes to complete writing operations.

Figure 11 shows the resource utilization of FFT codes
with sub-volume size 9x9x9 that running with 576 cores.
Comparing with sub-volume size 3x3x3, the computational
complexity of 9x9x9 increases quickly. The size of split for
case 9x9x9 also increases, in which we define 15 lines with 4
overlaps on left side and right side, so each split could get FFT
results of 7 lines after computation. The CPU utilization keeps
about 95% from start to end, and the increase of split size
reduces frequency of communication between each worker
node and NameNode, so the overall speedup of this case is

prominent.

Fig. 8: Speedup of FFT Codes

(a) CPU Usage

(b) Memory Usage

Fig. 9: Resource Usage of FFT with Sub-volume size 3x3x3
and 576 Cores (1)

C. Performance Analysis of Jacobi Iteration

Jacobi stencil computation application is more sophisticated
than other ones in our experiments, since it needs to exchange
boundary data after each iteration. The computation is not
complicate, but in normal case, it will take several iterations to
reach balance. In traditional Map/Reduce model, each worker
task could not communicate with others, even they may be on
the same node. To overcome this problem, some data sharing
mechanism need to add for Jacobi stencil codes. Similar to
scatter/gather functions in MPI, Spark itself provides broadcast
variables and collect functions, but as shown in Figure 12,
the performance is not good. So we introduce distributed
database, Cassandra to save the intermediate boundary data,
and all workers need to read boundary data from database
before computation and save boundary data back to database



(a) Disk Usage of Worker Node

(b) Disk Usage of Master Node (NameNode)

Fig. 10: Resource Usage of FFT with Sub-volume size 3x3x3
and 576 Cores (2)

(a) CPU Usage

(b) Memory Usage

Fig. 11: Resource Usage of FFT with Sub-volume size 9x9x9
and 576 Cores

after finished in each iteration. To get best performance on
Spark, the most important strategy is trying to avoid actions
such as collection and persisting data, and maximize pipeline

execution for all stages. So in the final implementation of
Jacobi case, boundary RDD was introduced, which could get
best speedup as shown in Figure 12.

Figure 13 shows the CPU and network utilization of Jacobi
codes using broadcast variables, in which usage of CPU is
very low, and more time is consumed on waiting and GC. In
the 10 iterations, each one need to save boundary and read new
one through network, so there are clear spikes in network read
and write. With such bottlenecks in this case, the performance
is certain to fall.

Figure 14 shows the CPU and network utilization of Jacobi
codes using Cassandra database to save boundary data, in
which the utilization of CPU is better than previous one, and
there are not many GC pauses. However, to read boundary
data from database and to write those back to database, there
are still huge amount of network read/write that cause CPU
to be under use.

Figure 15 shows the CPU and network utilization of Jacobi
codes using boundary RDD to save edge data. The CPU
utilization is better in each iteration, but since boundary RDDs
need repartition and resort for alignment and then merge
with result RDD to form a new RDD for next iteration
using zip function in Spark, there are repeated network I/O
for exchanging data between worker nodes. Comparing with
sequential codes and previous two methods on Spark, the
performance of boundary RDD is much better.

Fig. 12: Speedup of Jacobi Stencil Codes

VI. CONCLUSION AND FUTURE WORK

In this paper, we focus on experiments with a productive big
data analytics cloud platform to overcome the challenges of
processing big seismic data. SAC was developed and evaluated
with several typical seismic applications, in which there is
no prerequisite that users have parallel computing knowledge,
and only the core algorithms need to be filled with the help
of template provided by SAC. These templates provide a
high-level user interface for geophysicists without sacrifice
of performance. Some deep performance analysis about data
partition, memory and network utilization are also given in
this paper, which is a good experience for profiling Spark
applications.

Although SAC has been evaluated to be a good candidate for
processing seismic data, there are still some space to improve.
Current templates can hand the typical seismic applications,



(a) CPU Usage

(b) Network Usage

Fig. 13: Resource Usage of Jacobi Codes Using Broadcast
Variables for Sharing Data and Running with 576 Cores

(a) CPU Usage

(b) Network Usage

Fig. 14: Resource Usage of Jacobi Codes Using Cassandra DB
for Sharing Data and Running with 576 Cores

for some complicated cases, however, more templates need to
be defined. It is still a challenge for defining a template if
worker threads need to communicate with each other, which

(a) CPU Usage

(b) Network Usage

Fig. 15: Resource Usage of Jacobi Codes Using Boundary
RDD for Sharing Data and Running with 576 Cores

will be a focus of our next task. In the future, more high
level machine learning algorithms will be added to SAC in
order to create advanced seismic data analytics models. To
make SAC easy to be used by high level users and improve
communication efficiency, Workflow that could connect algo-
rithms and Notebook for interactive seismic data processing
are under development. Current visualization of seismic data
in web interface is still in 2D mode, 3D view mode with
remote rendering is already evaluated. For the performance
optimization of parallel program in SAC, more deep research
tasks are planned, such as adjusting GC parameters, GPU
optimization and global memory access support, etc. In the
view of applications developers, more data and computing
models are needed to investigate, such as streaming data, and
hybrid execution mode supporting legacy codes etc.
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