
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1959

SciSpark: Applying In-memory Distributed 
Computing to Weather Event Detection and Tracking 

Rahul Palamuttam1,3, Renato Marroquín  Mogrovejo1,4, Chris Mattmann1,2, Brian Wilson1, Kim Whitehall1,  
Rishi Verma1, Lewis McGibbney1, Paul Ramirez1  

1NASA Jet Propulsion Laboratory California Institute of Technology 
Pasadena, CA, USA 

 
2Computer Science Department, University of Southern California 

Los Angeles, CA 90089 USA 
 

3University of California San Diego  
La Jolla, CA, USA  

 
4ETH University 

Zürich, Switzerland  
rahulpalamut@gmail.com  

 
 
Abstract— In this paper we present SciSpark, a Big Data 
framework that extends ApacheTM Spark for scaling 
scientific computations. The paper details the initial 
architecture and design of SciSpark. We demonstrate how 
SciSpark achieves parallel ingesting and partitioning of 
earth science satellite and model datasets. We also 
illustrate the usability and extensibility of SciSpark by 
implementing aspects of the Grab ‘em Tag ‘em Graph ‘em 
(GTG) algorithm using SciSpark and its Map Reduce 
capabilities. GTG is a topical automated method for 
identifying and tracking Mesoscale Convective Complexes 
in satellite infrared datasets.  
 
Index Terms— Apache Spark, in-memory distributed 
computing, large scientific datasets, mesoscale convective 
complexes 

I. INTRODUCTION  
Google’s MapReduce [1] is a widely used framework for 

solving large computational problems in parallel. This model 
adopts the ‘map’ and ‘reduce’ semantics from functional 
programming to express data and task decomposition for 
parallel computing. ApacheTM Hadoop later introduced the 
Hadoop Distributed File System (HDFS) that is a highly fault 
tolerant distributed file system inspired by the Google File 
System (GFS) that accompanied the Google MapReduce 
framework. Coupling HDFS and MapReduce, makes Hadoop 
a general purpose system for use cases outside of its original 
inspiration – search – and in turn this combination has been 
applied to an increasing number of scientific domains such as 
Earth science, biomedicine, national security, etc. MapReduce 
jobs in Hadoop are launched as a series of map tasks followed 
by either additional map tasks, or by a single reduce task that 
combines the results. Each map task involves I/O processes to 
disk thereby introducing latency.  

Apache Spark [2] mitigates writing to disk by keeping 
results in memory until data needs to be spilled to disk. Spark 
uses the Resilient Distributed Dataset (RDD) [3] that is an in-
memory distributed data structure. Furthermore, Spark utilizes 
the functional programming paradigm to extend lambda 
expressions thus enabling users to express map and reduce 
tasks seamlessly. Spark achieves fault-tolerance through 
relying on a Directed Acyclic Graph (DAG) execution engine 
for its computation workflow, thus making it more efficient 
than the Hadoop work engine.  

Spark’s generic RDDs are ideal for tabular or unstructured 
data. Science datasets are highly structured. Reading 
hierarchical files from HDFS is a known challenge for Big 
Data applications due to how files are physically stored on 
distributed file systems. The dissonance between logical and 
physical data representation has been noted by researchers e.g. 
[4]. Research endeavors such as SciHadoop [5] attempt to 
solve the issue, however SciHadoop is built for Hadoop 
0.20.2. A variety of MapReduce specific interfaces are 
deprecated in the later Hadoop versions. Furthermore, with the 
increasingly growing community around Spark and its 
potential to offer speed-up and advancements of nearly 1000x 
in-memory, our team at NASA’s Jet Propulsion Laboratory - 
California Institute of Technology (JPL) began an exploratory 
effort called “SciSpark” to augment Spark with the ability to 
load, process, and deliver scientific data and results. SciSpark 
is funded by NASA’s Advanced Information Systems 
Technology (AIST) program [6],[7]. SciSpark is grounded in 
two novel scientific use cases involving data reuse algorithms. 
The first, is a k-means clustering algorithm to compute climate 
extremes over decades of climate model data [8], but is 
outside the scope of this paper. We will instead focus on the 
second algorithm – a graph-based automated method for 
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identifying and tracking Mesoscale Convective Complexes 
(MCCs) [9] that can be categorized as a severe weather event.  

This paper describes the initial architecture and design of 
SciSpark. SciSpark defines the Scientific Resilient Distributed 
Dataset (sRDD), a distributed-computing array structure that 
supports multidimensional data and processing of scientific 
algorithms in the MapReduce paradigm. SciSpark will 
produce methods to create sRDDs that preserve the logical 
representation of structured and dimensional data. Our early 
focus involves ingestion of network Common Data Form 
(netCDF) [10] and Hierarchical Data Format (HDF) files [11]. 
We follow sRDD creation by discussing a new approach to 
pair sequential data from separate arrays in order to implement 
a SciSpark version for the initial stages of the GTG algorithm 
(our further work will implement the full algorithm). We also 
illustrate the shift from the sequential programming paradigm 
to the MapReduce paradigm. Metrics with respect to graph 
development and pitfalls encountered are discussed. Our early 
work can be used as both a practical experience, and a 
research roadmap for work in Spark using structured, multi-
dimensional scientific datasets going forward. 

II. SCISPARK 
A. The SciSpark Architecture  

The SciSpark architecture presented in Figure 1 consists of 
two components: the backend core and the front-end 
visualization. Within the backend are three layers that interact 
to complete a user-defined computation pipeline by leveraging 
sciTensor objects within the Scientific Resilient Distributed 
Dataset (sRDD) - the distributed-computing data structure. 
The sciTensor is a self-document array-collection developed 
for sRDD transformations. To interact with SciSpark’s 
backend, an expert user utilizes the SciSpark API.  A novice 
user will interact with SciSpark via the frontend that will 
leverage a RESTful web API. The functionality of the layers 
in the SciSpark backend will be briefly presented. 

 
Figure 1: The SciSpark architecture 
 

1) Persistence layer  
SciSpark ingests scientific data formats, for example 

netCDF and HDF source files, from various local and remote 
data sources in a non-sequential manner.  SciSpark reads these 

sources in the persistence layer using their uniform resource 
identifiers (URIs). SciSpark also uses the persistence layer to 
stage intermediate or output final results. The SciSpark API 
provides methods to access these data sources, and is 
extendable to other sources. 

2) Partition, Extract, Transform and Load (PETaL) layer 
The PETaL layer first partitions and distributes the URIs 

across the compute nodes. It then extracts the data and 
transforms it into a data type usable in SciSpark that is then 
loaded into the processing layer. The SciSparkContext 
provides the API for the PETaL layer. 

3) Processing layer 
In this layer of SciSpark, the user executes their 

computation pipeline. The sRDD methods in the API govern 
these computation tasks. 

The aspects of the architecture that have been implemented 
are now presented. 

 
B. SciSpark Implementation 

SciSpark is implemented in a Java and Scala environment. 
The environment was chosen to avoid the known latency 
issues related to the communication overhead involved with 
copying data from the worker JVMs to Python daemon 
processes in the PySpark environment [12]. Furthermore after 
a collect call is made in PySpark, the driver JVM will write 
results to local disk and that is then read by the Python 
process. 

The concept of a scientific Resilient Distributed Dataset 
(sRDD) couples operations on multi-dimensional arrays and 
distributed in-memory processing. In order to achieve this, the 
idea of self-documentation in hierarchical file formats was 
utilized to construct a self-documented array class called 
sciTensor as illustrated in Figure 2. The goal of the sciTensor 
is to provide logic that defines the data in the multi-
dimensional format that scientists are accustomed to, while 
achieving high-performance matrix operations through the 
ND4J [13] and Breeze [14] linear algebra libraries. These 
libraries take advantage of cache locality during element-wise 
operations, by allocating dimensional arrays as physical linear 
arrays, similar to C and FORTRAN.  

 

 
Figure 2: Illustration of the sRDD and sciTensor architectures 
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C. sRDD and sciTensor Architectures 

The sciTensor class consists of two hash tables. The 
metadata hash table is used to record information about the 
dataset as key-value pairs. Users can query the table within an 
sRDD transformation function. The table can also be used to 
enter information such as date, area, or minimum and 
maximum values. Each sciTensor is constructed from arrays 
loaded from a unique path, irrespective of its data source from 
the persistent layer i.e. whether it is from OpenDAP, HDFS, 
or the local filesystem. Since hierarchical files can have 
multiple variable arrays, sciTensor also keeps a hash table of 
these arrays where the keys are the variable names and the 
values are the arrays. Users can specify which variables they 
want to load from the dataset and can specify which variable 
they want to use for computation during run-time.  

 

D. How PETaL  Materializes sRDDs 
To extend RDDs to the scientific community, sRDD 

requires three ingredients as illustrated in Figure 3.  

 

Figure 3: Illustration of the sRDD Materialization Process 

a. The URI Set: The user provides a set of line-
separated URI’s from OpenDAP URLs, HDFS path 
names, or path names on the local filesystem in a file. 

b. The partition function is called when computing the 
partition sets of sRDD. It groups the URI set after, 
which SciSpark distributes the subsets of URI’s to 
different compute nodes in the cluster. 

c. The user must also provide a loader function that 
corresponds to the specific source the URI is pointing 
to. For example, if given a path to a netCDF file the 
loader function must leverage the netCDF Java API 
to extract the necessary information. 

The SciSparkContext of the SciSpark API provides 
methods to materialize sRDDs such as NetCDFFile and 
MergFile. These methods follow the above three-ingredient 
pattern.  

D. Description of Tensor Libraries 
Between the persistence layer and the PETaL layer, is the 

process of extracting the data from the native format into the 

sciTensors. This component of the sciTensor is the 
AbstractTensor whose role is to provide a common interface 
to different linear algebra libraries. This need arose due to 
ND4J’s support for n-dimensional arrays but lack of maturity, 
whereas Breeze is a seasoned project but only supports 2-
dimensional arrays.  

Breeze takes advantage of Scala's operator overloading 
feature and is backed by Netlib-java - a wrapper library 
around existing BLAS [15] libraries. Instead of calling 
verbose function names for different levels of BLAS 
operations, Breeze enables code to be succinct by utilizing 
operator overloading. It is limited to matrix operations, and 
does not support beyond 2-dimensional arrays.   

ND4J claims to provide Python NumPy-like syntax and 
performance. The library gives the option to choose from a 
variety of backend BLAS libraries to use. ND4J, like Breeze, 
supports operations on complex numbers. ND4J also provides 
a backend called Nd4j-x86 that uses BLAS for linear algebra 
operations and uses C-level for-loops for element-wise 
operations. ND4J is a young project and is not as mature as 
Breeze.  

We performed evaluations of the Breeze and ND4J 
libraries compared to NumPy for two time periods, weeks 
apart. It was found that the ND4J metrics changed drastically 
between these periods - further indicating the immaturity of 
this project. 

III. A SCISPARK USE CASE 
The code for our experiments can be found at the GitHub 

repo https://github.com/SciSpark/SciSpark. The data used in 
this study are the National Centers for Environmental 
Prediction / Climate Prediction Center (NCEP/CPC) 4 km 
Global (60N – 60S) Infrared Dataset (also known as MERG – 
merged dataset) [16]. 
 
A. The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method 

The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method 
illustrated in Figure 4, automates identification of a particular 
weather phenomenon by searching for cloud elements in 
consecutive time data frames (acquired from files) of 
brightness temperature, correlating them in a graph, and 
analyzing the graph [15]. The cloud elements are identified via 
a criteria based on shape, size and absolute values of 
brightness temperatures of contiguous points within a data 
frame, and are denoted as the vertices in the graph. 
Consecutive frames are then checked for overlapping cloud 
elements. Two cloud elements that overlap are represented as 
an edge in the graph. The graphs are then analyzed via graph 
methods to determine the type of weather phenomenon. The 
GTG method presents an opportunity to explore parallelizing 
the sequential approach of constructing the final graph with 
inherent chronology from multi-dimensional arrays within the 
SciSpark framework. We present this as the Distributed GTG.  
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Figure 4: The (sequential) GTG workflow. The GTG reads files sequentially from a local filesystem and places the data into an array. Cloud elements are 
identified in each time frame - these are the graph nodes. Spatial overlapping between sequential time frames determines the graph edges. The graph is then 
analyzed to determine the type of weather feature.  

B. The Distributed GTG 
The initial steps of sequential GTG are to load the files 

sequentially, then find cloud elements and overlapping cloud 
elements across consecutive frames. Once cloud elements are 
identified, the sequential implementation relies on a “for loop” 
to iterate through each data frame to determine graph edges. 
Since the array is shared on each iteration, array elements can 
be referenced by index. The sequential GTG will operate in 
O(n) time as it iterates through all elements in a single thread 
(as illustrated in Figure 4). 

 
sRDDs on the other hand are computed by executing 

transformation calls on all partitions simultaneously which 
makes directly porting the sequential version of GTG to a 
distributed implementation infeasible. The primary limitation 
is that map tasks cannot access sciTensors in other sRDD 
partitions. In order to overcome this lack of shared-memory in 
distributed system tasks, the approach of the sequential GTG 
required redesigning. The Distributed GTG is presented in 
Figure 5.  

Figure 5: The Distributed GTG workflow. The original data is read into sciTensors into a sRDD. The cloud elements and overlapping regions are determined from 
each sciTensor pair.  

Within the Distributed GTG, the workflow is: 
a. Identify the files required for an experiment on a 

given file system. A path to the HDFS was used. A 
hash table mapping of chronological dates to 
indices of the file list found at the path was 
generated. 

b. Partition the file list, extract, transform and load 
the data frame into SciSpark’s sciTensors on a 
sRDD. SciSparkContext leverages SparkContext’s 
binaryFiles function to read binary data from 
HDFS into sciTensors. 

c. Build the graph in the processing layer utilizing 
sRDD mapping capabilities. By finding ways to 
pair sciTensors in the sRDD, we can compute the 
initial stages of the GTG in parallel.  

C. Structuring input sRDD for Distributed GTG graph 
construction 

We wish to achieve a chronological frame pairing in 
order to replicate the original graph construction in the 
GTG. This section provides the algorithmic assessment of 
the approaches explored. We do not evaluate run-time since 
that is specific to how the task function is implemented. 

1) Naïve port of GTG 
 We attempted to port the sequential GTG by utilizing 

the sRDD filter operation to reference specific frames. 
However this exploited little parallelism, as the filtered 
sRDDs represented one frame each and it was required to 
execute the collect operation at the end of each iteration 
(See Figure 6). 
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Figure 6: Implementation of the naive approach to represent the initial 
stages of the sequential GTG in SciSpark 

Our naïve approach suffered from network latency in 
SciSpark resulting from overhead communications with all 
the partitions.  

 
2) Cartesian product approach 

SciSpark extends the ability to create Cartesian products 
between two sRDDs. Naturally a Cartesian product of a 
sRDD with itself would compute all pairs of frames. The 
frame-pair set is then filtered for frame pairs that are 
consecutive as illustrated in Figure 7. This is the simplest 
solution to achieve parallelism, but has the highest 
performance cost. When SciSpark computes the Cartesian 
product, it scales the partition space, and consequently the 
number of tasks and memory requirements, by N2. This 
means that for each frame there are N - 1 copies which are 
never used. Furthermore, if an entire sRDD partition is 
empty after the filter call, it is not eliminated from the 
SciSpark DAG execution pipeline. Thus unnecessary 
network latency is incurred when tasks communicate back 
to the master node.  

Figure 7: Illustration of the Cartesian product between two sRDDs. Note 
the elements are not ordered. Filtering on the frame-pair set obtains the 
chronological frame pairs necessary for edge mining. The implementation 
is shown at the bottom.  

We conclude that while the Cartesian product combined 
with the filter is powerful and easy to use, it does not scale 
for larger problems as it creates wasteful data and 
unnecessary tasks.   

3) The group-by approach  
Another solution involved making a copy of each frame 

to map to the next frame thus creating key-value pairs 
between original frame and the next frame. The key-value 
pairs were then grouped by the key (i.e. the original frame), 
thus generating consecutive frame pairs as illustrated in 

Figure 8. This implementation did not change the partition 
space and consequently the number of tasks. At this point 
we treat each pair as input to a single sequentially 
implemented function. 

 
Figure 8: Illustration of the copy and mapping of the two sRDDs and the 
groupBy operation leading to the chronological frame pairs necessary for 
edge mining. The implementation is shown at the bottom.  

 
Table 1 summarizes the results of our approaches to 

accomplish the first stages of the sequential GTG. We 
concluded from our analysis the group-by approach is 
favorable for constraining the memory footprint. 

 Original 
GTG 

Naïve port Cartesian 
product Group-by 

Level of 
Parallelism 1 <1 p p 

Number of 
Tasks 1 n k k 

Total 
Memory O(n) O(n) O(n2) 2n = O(n) 

Input 
Memory 
per task 

O(n) 2 = O(1) O(n2/k2) 2n/k = O(n/k) 

 
Table 1: Algorithmic assessment of the approaches used to achieve the 
chronological frame pairing necessary for replicating the graph 
construction in the GTG  
 

Within the Distributed GTG implementation in SciSpark 
we utilize the groupby approach. The next steps involve 
defining the task that identify the cloud elements with a user 
defined criteria. Then implementing a depth first search to 
find and label these cloud elements. The labeled component 
arrays are referred to as component frames within the 
Distributed GTG implementation. We now look at reducing 
the runtime for a single task in the graph construction job. A 
key point to note is that we needed to increase our input size 
in order to restructure the problem into a parallel workflow. 
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D. Graph vertex and edge mining from a single pair  
Once the sRDD of consecutive frame-pairs is computed, 

each pair can be computed on independently. Reducing 
computations to independent tasks is paramount to 
MapReduce programming, as well as monitoring memory 
consumption associated with individual tasks. This section 
analyzes task runtime and the impact on overall job runtime 
as it relates to the graph construction in the GTG. The tests 
were run on a 4-node cluster, each node has 32 cores, 240 
GB memory and 100 GB disk space. The tests record job 
runtimes to process 6000 frames of data type double, split 
over 350 partitions. The frame size was varied.  

1) Cartesian product approach 
In our initial approach, we extracted unique labeled 

components from each frame into masked component 
frames. From a single pair of frames, we extracted all 
component frames, then called a Cartesian product on the 
two lists of component frames. For small frames with few 
components this is a feasible operation. However for large 
frames with several components, the component-pair space 
becomes infeasible for a single task as shown in Table 2.   

2) In-place Iteration approach  
As we are considering a single task, we can rely on the 

shared-memory state of sequential programming since the 
enclosed function of a map operation is independent of 
other executing functions. This approach generated two 
component-labeled arrays for each pair, introduced a list to 
record overlapping labels, and stored the overall properties 
of each component in a hash table (as defined by the criteria 
used in the GTG). The two labeled matrices are multiplied 
to obtain a product matrix with non-zero values in positions 
of overlap. Since the dimensions of the labeled matrix and 
the product matrix are the same, we iterate over the product 
matrix and update our list of component edges for each non-
zero value. For each component label encountered in the 
loop, we update the corresponding properties in the hash 
table. At this stage of the Distributed GTG implementation 
we leverage sequential programming techniques to write 
algorithms that consume fewer resources (see Table 2).  

 

 Cartesian 
product 

In-place 
Iteration 

Average Number of 
Components per 

Frame 
n n 

Number of Matrix 
Products n2 1 

Table 2: Algorithmic analysis of the single task to the GTG construction 
approaches 

Figure 9 provides the job runtime achieved on the 4-node 
cluster between the two task implementations.  

 

Figure 9: The job runtimes of the task approaches to the graph construction 
in the GTG. The matrices are randomly generated, factoring out the I/O 
latency incurred by ingesting physical data. Note that the component-wise 
Cartesian product implementation cannot scale beyond frames of 1000 x 
1000. The in-place iteration approach scales to frames of 3000 x 3000. This 
is close to a terabyte of data being processed. 

The final Distributed GTG is presented using the 
MapReduce paradigm in Figure 10. It is worth noting that 
optimizations, such as pre-aggregations over partitions 
containing consecutive time-frames, can be achieved by 
using an extra data structure to perform an In-Mapper 
aggregation. We do not describe such optimizations here as 
Apache Spark optimizes the DAG execution plan it 
generates. 

Figure 10: The Distributed GTG algorithm using the MapReduce paradigm 
in SciSpark 

E. Latency Trade-Offs with Apache Spark 
We observed that Spark successfully mitigates I/O 

latency by only spilling to disk when necessary. However, 
Spark’s reliance on the JVM combined with its greedy 
usage of memory has introduced another significant source 

1: class Mapper 

2: // a time-frame id represents the actual 
date/timestamp when the data was gathered.  

3: method MAP(key frameId, sciTensor r) 

4: EMIT(frameId, r) 

5: // the (frameId + 1) operation outputs the next 
sequential frameID 

6: EMIT(frameId + 1, r) 

1: class Reducer 

2: method Reduce(key frameId, sciTensors [r1, r2, . . 
.]) 

3:  // Avoids using first and last frames 

4:  If sciTensors.length == 2 Then 

5:        // label the components inside each sciTensor 

6:        AL = labelComponents(sciTensors[0]) 

7:        BL = labelComponents(sciTensors[1]) 

8:        // outputs the edge found between those 
consecutives time-frames 

9:    EMIT (overlappingComponents(AL, BL)) 
10:  EndIf 
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of latency in SciSpark, namely Java’s “stop-the-world” 
garbage collection. We observed for matrices larger than 
2500 x 2500 approximately 20 - 25% of the task time is 
waiting on garbage collection.  
 

IV. CONCLUSIONS AND FUTURE WORK 
SciSpark provides an API that abstracts the methods to 

ingest scientific data into a distributed pipeline away from 
the end scientist user. For future work a solution that does 
not tightly couple reading hierarchical files with the HDFS 
version is required. One idea is to use binaryFiles to read the 
entire NetCDF files or binaryRecords to read specific 
offsets. The netCDF API would need to be integrated into 
these methods.  

SciSpark abstracts the ND4J and Breeze linear algebra 
libraries behind a common interface for evaluation 
purposes. The performance of current and future multi-
dimensional array Java libraries needs to be consistently 
evaluated. Towards this effort, SciSpark’s design will 
provide seamless access to operations on multi-dimensional 
scientific datasets.  

The SciSpark API provides developers with a clean 
architecture for contributing new methods to partition, 
extract, transform and load data from different 
formats.  Partitioning in time was tested in this research. For 
future work, partition and extraction methods in the 
SciSparkContext of the API will be explored to achieve 
range partitioning in other dimensions. 

Within SciSpark, we are able to process high resolution 
grids using a complex sequential-based algorithm without 
compromising on the original matrix size.  

Our case study demonstrated that copying of data can 
lead to better use of resources in distributed applications. 
For the distributed implementation of GTG, it was found 
that creating a copy of the input data allowed for 
maintaining the chronological order necessary for the graph 
creation. This finding supports SciSpark’s architectural 
design in the processing layer of creating a cache space for 
large jobs.  

We found that SciSpark’s architecture supports 
leveraging the advantages of both distributed and sequential 
programming to complete user-defined problems. The 
recommended approach is to construct jobs for parallel 
work while utilizing the shared-memory state of each 
independent task. 

While the Cartesian product coupled with the filter is a 
powerful API feature for generating pairs, it is infeasible for 
Big Data applications.  End users framing a Big Data 
problem should reformulate it within the MapReduce 
paradigm from the onset.  
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