
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1959

SciSpark: Applying In-memory Distributed
Computing to Weather Event Detection and Tracking

Rahul Palamuttam1,3, Renato Marroquín Mogrovejo1,4, Chris Mattmann1,2, Brian Wilson1, Kim Whitehall1,
Rishi Verma1, Lewis McGibbney1, Paul Ramirez1

1NASA Jet Propulsion Laboratory California Institute of Technology
Pasadena, CA, USA

2Computer Science Department, University of Southern California

Los Angeles, CA 90089 USA

3University of California San Diego
La Jolla, CA, USA

4ETH University

Zürich, Switzerland
rahulpalamut@gmail.com

Abstract— In this paper we present SciSpark, a Big Data
framework that extends ApacheTM Spark for scaling
scientific computations. The paper details the initial
architecture and design of SciSpark. We demonstrate how
SciSpark achieves parallel ingesting and partitioning of
earth science satellite and model datasets. We also
illustrate the usability and extensibility of SciSpark by
implementing aspects of the Grab ‘em Tag ‘em Graph ‘em
(GTG) algorithm using SciSpark and its Map Reduce
capabilities. GTG is a topical automated method for
identifying and tracking Mesoscale Convective Complexes
in satellite infrared datasets.

Index Terms— Apache Spark, in-memory distributed
computing, large scientific datasets, mesoscale convective
complexes

I. INTRODUCTION
Google’s MapReduce [1] is a widely used framework for

solving large computational problems in parallel. This model
adopts the ‘map’ and ‘reduce’ semantics from functional
programming to express data and task decomposition for
parallel computing. ApacheTM Hadoop later introduced the
Hadoop Distributed File System (HDFS) that is a highly fault
tolerant distributed file system inspired by the Google File
System (GFS) that accompanied the Google MapReduce
framework. Coupling HDFS and MapReduce, makes Hadoop
a general purpose system for use cases outside of its original
inspiration – search – and in turn this combination has been
applied to an increasing number of scientific domains such as
Earth science, biomedicine, national security, etc. MapReduce
jobs in Hadoop are launched as a series of map tasks followed
by either additional map tasks, or by a single reduce task that
combines the results. Each map task involves I/O processes to
disk thereby introducing latency.

Apache Spark [2] mitigates writing to disk by keeping
results in memory until data needs to be spilled to disk. Spark
uses the Resilient Distributed Dataset (RDD) [3] that is an in-
memory distributed data structure. Furthermore, Spark utilizes
the functional programming paradigm to extend lambda
expressions thus enabling users to express map and reduce
tasks seamlessly. Spark achieves fault-tolerance through
relying on a Directed Acyclic Graph (DAG) execution engine
for its computation workflow, thus making it more efficient
than the Hadoop work engine.

Spark’s generic RDDs are ideal for tabular or unstructured
data. Science datasets are highly structured. Reading
hierarchical files from HDFS is a known challenge for Big
Data applications due to how files are physically stored on
distributed file systems. The dissonance between logical and
physical data representation has been noted by researchers e.g.
[4]. Research endeavors such as SciHadoop [5] attempt to
solve the issue, however SciHadoop is built for Hadoop
0.20.2. A variety of MapReduce specific interfaces are
deprecated in the later Hadoop versions. Furthermore, with the
increasingly growing community around Spark and its
potential to offer speed-up and advancements of nearly 1000x
in-memory, our team at NASA’s Jet Propulsion Laboratory -
California Institute of Technology (JPL) began an exploratory
effort called “SciSpark” to augment Spark with the ability to
load, process, and deliver scientific data and results. SciSpark
is funded by NASA’s Advanced Information Systems
Technology (AIST) program [6],[7]. SciSpark is grounded in
two novel scientific use cases involving data reuse algorithms.
The first, is a k-means clustering algorithm to compute climate
extremes over decades of climate model data [8], but is
outside the scope of this paper. We will instead focus on the
second algorithm – a graph-based automated method for

1960

identifying and tracking Mesoscale Convective Complexes
(MCCs) [9] that can be categorized as a severe weather event.

This paper describes the initial architecture and design of
SciSpark. SciSpark defines the Scientific Resilient Distributed
Dataset (sRDD), a distributed-computing array structure that
supports multidimensional data and processing of scientific
algorithms in the MapReduce paradigm. SciSpark will
produce methods to create sRDDs that preserve the logical
representation of structured and dimensional data. Our early
focus involves ingestion of network Common Data Form
(netCDF) [10] and Hierarchical Data Format (HDF) files [11].
We follow sRDD creation by discussing a new approach to
pair sequential data from separate arrays in order to implement
a SciSpark version for the initial stages of the GTG algorithm
(our further work will implement the full algorithm). We also
illustrate the shift from the sequential programming paradigm
to the MapReduce paradigm. Metrics with respect to graph
development and pitfalls encountered are discussed. Our early
work can be used as both a practical experience, and a
research roadmap for work in Spark using structured, multi-
dimensional scientific datasets going forward.

II. SCISPARK
A. The SciSpark Architecture

The SciSpark architecture presented in Figure 1 consists of
two components: the backend core and the front-end
visualization. Within the backend are three layers that interact
to complete a user-defined computation pipeline by leveraging
sciTensor objects within the Scientific Resilient Distributed
Dataset (sRDD) - the distributed-computing data structure.
The sciTensor is a self-document array-collection developed
for sRDD transformations. To interact with SciSpark’s
backend, an expert user utilizes the SciSpark API. A novice
user will interact with SciSpark via the frontend that will
leverage a RESTful web API. The functionality of the layers
in the SciSpark backend will be briefly presented.

Figure 1: The SciSpark architecture

1) Persistence layer
SciSpark ingests scientific data formats, for example

netCDF and HDF source files, from various local and remote
data sources in a non-sequential manner. SciSpark reads these

sources in the persistence layer using their uniform resource
identifiers (URIs). SciSpark also uses the persistence layer to
stage intermediate or output final results. The SciSpark API
provides methods to access these data sources, and is
extendable to other sources.

2) Partition, Extract, Transform and Load (PETaL) layer
The PETaL layer first partitions and distributes the URIs

across the compute nodes. It then extracts the data and
transforms it into a data type usable in SciSpark that is then
loaded into the processing layer. The SciSparkContext
provides the API for the PETaL layer.

3) Processing layer
In this layer of SciSpark, the user executes their

computation pipeline. The sRDD methods in the API govern
these computation tasks.

The aspects of the architecture that have been implemented
are now presented.

B. SciSpark Implementation

SciSpark is implemented in a Java and Scala environment.
The environment was chosen to avoid the known latency
issues related to the communication overhead involved with
copying data from the worker JVMs to Python daemon
processes in the PySpark environment [12]. Furthermore after
a collect call is made in PySpark, the driver JVM will write
results to local disk and that is then read by the Python
process.

The concept of a scientific Resilient Distributed Dataset
(sRDD) couples operations on multi-dimensional arrays and
distributed in-memory processing. In order to achieve this, the
idea of self-documentation in hierarchical file formats was
utilized to construct a self-documented array class called
sciTensor as illustrated in Figure 2. The goal of the sciTensor
is to provide logic that defines the data in the multi-
dimensional format that scientists are accustomed to, while
achieving high-performance matrix operations through the
ND4J [13] and Breeze [14] linear algebra libraries. These
libraries take advantage of cache locality during element-wise
operations, by allocating dimensional arrays as physical linear
arrays, similar to C and FORTRAN.

Figure 2: Illustration of the sRDD and sciTensor architectures

Persistence layer

openDap
servers

HDFS local FS

Partition, Extract, Transform and Load (PETaL)

Mapping

Regridding

Metrics

Algorithms

sRDD cache

Sc
iS

pa
rk

 A
PI

Data
scientist/
Expert

SciSpark RESTful API

Scientists /
Decision
Makers /
Educators /
Students

Backend

Visualization layer

Frontend

1961

C. sRDD and sciTensor Architectures

The sciTensor class consists of two hash tables. The
metadata hash table is used to record information about the
dataset as key-value pairs. Users can query the table within an
sRDD transformation function. The table can also be used to
enter information such as date, area, or minimum and
maximum values. Each sciTensor is constructed from arrays
loaded from a unique path, irrespective of its data source from
the persistent layer i.e. whether it is from OpenDAP, HDFS,
or the local filesystem. Since hierarchical files can have
multiple variable arrays, sciTensor also keeps a hash table of
these arrays where the keys are the variable names and the
values are the arrays. Users can specify which variables they
want to load from the dataset and can specify which variable
they want to use for computation during run-time.

D. How PETaL Materializes sRDDs
To extend RDDs to the scientific community, sRDD

requires three ingredients as illustrated in Figure 3.

Figure 3: Illustration of the sRDD Materialization Process

a. The URI Set: The user provides a set of line-
separated URI’s from OpenDAP URLs, HDFS path
names, or path names on the local filesystem in a file.

b. The partition function is called when computing the
partition sets of sRDD. It groups the URI set after,
which SciSpark distributes the subsets of URI’s to
different compute nodes in the cluster.

c. The user must also provide a loader function that
corresponds to the specific source the URI is pointing
to. For example, if given a path to a netCDF file the
loader function must leverage the netCDF Java API
to extract the necessary information.

The SciSparkContext of the SciSpark API provides
methods to materialize sRDDs such as NetCDFFile and
MergFile. These methods follow the above three-ingredient
pattern.

D. Description of Tensor Libraries
Between the persistence layer and the PETaL layer, is the

process of extracting the data from the native format into the

sciTensors. This component of the sciTensor is the
AbstractTensor whose role is to provide a common interface
to different linear algebra libraries. This need arose due to
ND4J’s support for n-dimensional arrays but lack of maturity,
whereas Breeze is a seasoned project but only supports 2-
dimensional arrays.

Breeze takes advantage of Scala's operator overloading
feature and is backed by Netlib-java - a wrapper library
around existing BLAS [15] libraries. Instead of calling
verbose function names for different levels of BLAS
operations, Breeze enables code to be succinct by utilizing
operator overloading. It is limited to matrix operations, and
does not support beyond 2-dimensional arrays.

ND4J claims to provide Python NumPy-like syntax and
performance. The library gives the option to choose from a
variety of backend BLAS libraries to use. ND4J, like Breeze,
supports operations on complex numbers. ND4J also provides
a backend called Nd4j-x86 that uses BLAS for linear algebra
operations and uses C-level for-loops for element-wise
operations. ND4J is a young project and is not as mature as
Breeze.

We performed evaluations of the Breeze and ND4J
libraries compared to NumPy for two time periods, weeks
apart. It was found that the ND4J metrics changed drastically
between these periods - further indicating the immaturity of
this project.

III. A SCISPARK USE CASE
The code for our experiments can be found at the GitHub

repo https://github.com/SciSpark/SciSpark. The data used in
this study are the National Centers for Environmental
Prediction / Climate Prediction Center (NCEP/CPC) 4 km
Global (60N – 60S) Infrared Dataset (also known as MERG –
merged dataset) [16].

A. The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method

The Grab ‘em, Tag ‘em, Graph ‘em (GTG) method
illustrated in Figure 4, automates identification of a particular
weather phenomenon by searching for cloud elements in
consecutive time data frames (acquired from files) of
brightness temperature, correlating them in a graph, and
analyzing the graph [15]. The cloud elements are identified via
a criteria based on shape, size and absolute values of
brightness temperatures of contiguous points within a data
frame, and are denoted as the vertices in the graph.
Consecutive frames are then checked for overlapping cloud
elements. Two cloud elements that overlap are represented as
an edge in the graph. The graphs are then analyzed via graph
methods to determine the type of weather phenomenon. The
GTG method presents an opportunity to explore parallelizing
the sequential approach of constructing the final graph with
inherent chronology from multi-dimensional arrays within the
SciSpark framework. We present this as the Distributed GTG.

1962

Figure 4: The (sequential) GTG workflow. The GTG reads files sequentially from a local filesystem and places the data into an array. Cloud elements are
identified in each time frame - these are the graph nodes. Spatial overlapping between sequential time frames determines the graph edges. The graph is then
analyzed to determine the type of weather feature.

B. The Distributed GTG
The initial steps of sequential GTG are to load the files

sequentially, then find cloud elements and overlapping cloud
elements across consecutive frames. Once cloud elements are
identified, the sequential implementation relies on a “for loop”
to iterate through each data frame to determine graph edges.
Since the array is shared on each iteration, array elements can
be referenced by index. The sequential GTG will operate in
O(n) time as it iterates through all elements in a single thread
(as illustrated in Figure 4).

sRDDs on the other hand are computed by executing

transformation calls on all partitions simultaneously which
makes directly porting the sequential version of GTG to a
distributed implementation infeasible. The primary limitation
is that map tasks cannot access sciTensors in other sRDD
partitions. In order to overcome this lack of shared-memory in
distributed system tasks, the approach of the sequential GTG
required redesigning. The Distributed GTG is presented in
Figure 5.

Figure 5: The Distributed GTG workflow. The original data is read into sciTensors into a sRDD. The cloud elements and overlapping regions are determined from
each sciTensor pair.

Within the Distributed GTG, the workflow is:
a. Identify the files required for an experiment on a

given file system. A path to the HDFS was used. A
hash table mapping of chronological dates to
indices of the file list found at the path was
generated.

b. Partition the file list, extract, transform and load
the data frame into SciSpark’s sciTensors on a
sRDD. SciSparkContext leverages SparkContext’s
binaryFiles function to read binary data from
HDFS into sciTensors.

c. Build the graph in the processing layer utilizing
sRDD mapping capabilities. By finding ways to
pair sciTensors in the sRDD, we can compute the
initial stages of the GTG in parallel.

C. Structuring input sRDD for Distributed GTG graph
construction

We wish to achieve a chronological frame pairing in
order to replicate the original graph construction in the
GTG. This section provides the algorithmic assessment of
the approaches explored. We do not evaluate run-time since
that is specific to how the task function is implemented.

1) Naïve port of GTG
 We attempted to port the sequential GTG by utilizing

the sRDD filter operation to reference specific frames.
However this exploited little parallelism, as the filtered
sRDDs represented one frame each and it was required to
execute the collect operation at the end of each iteration
(See Figure 6).

1963

Figure 6: Implementation of the naive approach to represent the initial
stages of the sequential GTG in SciSpark

Our naïve approach suffered from network latency in
SciSpark resulting from overhead communications with all
the partitions.

2) Cartesian product approach

SciSpark extends the ability to create Cartesian products
between two sRDDs. Naturally a Cartesian product of a
sRDD with itself would compute all pairs of frames. The
frame-pair set is then filtered for frame pairs that are
consecutive as illustrated in Figure 7. This is the simplest
solution to achieve parallelism, but has the highest
performance cost. When SciSpark computes the Cartesian
product, it scales the partition space, and consequently the
number of tasks and memory requirements, by N2. This
means that for each frame there are N - 1 copies which are
never used. Furthermore, if an entire sRDD partition is
empty after the filter call, it is not eliminated from the
SciSpark DAG execution pipeline. Thus unnecessary
network latency is incurred when tasks communicate back
to the master node.

Figure 7: Illustration of the Cartesian product between two sRDDs. Note
the elements are not ordered. Filtering on the frame-pair set obtains the
chronological frame pairs necessary for edge mining. The implementation
is shown at the bottom.

We conclude that while the Cartesian product combined
with the filter is powerful and easy to use, it does not scale
for larger problems as it creates wasteful data and
unnecessary tasks.

3) The group-by approach
Another solution involved making a copy of each frame

to map to the next frame thus creating key-value pairs
between original frame and the next frame. The key-value
pairs were then grouped by the key (i.e. the original frame),
thus generating consecutive frame pairs as illustrated in

Figure 8. This implementation did not change the partition
space and consequently the number of tasks. At this point
we treat each pair as input to a single sequentially
implemented function.

Figure 8: Illustration of the copy and mapping of the two sRDDs and the
groupBy operation leading to the chronological frame pairs necessary for
edge mining. The implementation is shown at the bottom.

Table 1 summarizes the results of our approaches to

accomplish the first stages of the sequential GTG. We
concluded from our analysis the group-by approach is
favorable for constraining the memory footprint.

 Original
GTG

Naïve port Cartesian
product Group-by

Level of
Parallelism 1 <1 p p

Number of
Tasks 1 n k k

Total
Memory O(n) O(n) O(n2) 2n = O(n)

Input
Memory
per task

O(n) 2 = O(1) O(n2/k2) 2n/k = O(n/k)

Table 1: Algorithmic assessment of the approaches used to achieve the
chronological frame pairing necessary for replicating the graph
construction in the GTG

Within the Distributed GTG implementation in SciSpark
we utilize the groupby approach. The next steps involve
defining the task that identify the cloud elements with a user
defined criteria. Then implementing a depth first search to
find and label these cloud elements. The labeled component
arrays are referred to as component frames within the
Distributed GTG implementation. We now look at reducing
the runtime for a single task in the graph construction job. A
key point to note is that we needed to increase our input size
in order to restructure the problem into a parallel workflow.

��������� ������	���
����������
����
	����
��������� ������������
�
��������� !������
�� ������
�����
����
	����
�������������������� !��

�
��

(N,N*) where N = the key which is a numeric label
N* = the value which is a physical frame matrix

�������������'������������
�

�!��'(�	���!!������"��!���&�%���"""
������������
������'������������������������
������������
�������
�!!����"�'(�#

$"

1964

D. Graph vertex and edge mining from a single pair
Once the sRDD of consecutive frame-pairs is computed,

each pair can be computed on independently. Reducing
computations to independent tasks is paramount to
MapReduce programming, as well as monitoring memory
consumption associated with individual tasks. This section
analyzes task runtime and the impact on overall job runtime
as it relates to the graph construction in the GTG. The tests
were run on a 4-node cluster, each node has 32 cores, 240
GB memory and 100 GB disk space. The tests record job
runtimes to process 6000 frames of data type double, split
over 350 partitions. The frame size was varied.

1) Cartesian product approach
In our initial approach, we extracted unique labeled

components from each frame into masked component
frames. From a single pair of frames, we extracted all
component frames, then called a Cartesian product on the
two lists of component frames. For small frames with few
components this is a feasible operation. However for large
frames with several components, the component-pair space
becomes infeasible for a single task as shown in Table 2.

2) In-place Iteration approach
As we are considering a single task, we can rely on the

shared-memory state of sequential programming since the
enclosed function of a map operation is independent of
other executing functions. This approach generated two
component-labeled arrays for each pair, introduced a list to
record overlapping labels, and stored the overall properties
of each component in a hash table (as defined by the criteria
used in the GTG). The two labeled matrices are multiplied
to obtain a product matrix with non-zero values in positions
of overlap. Since the dimensions of the labeled matrix and
the product matrix are the same, we iterate over the product
matrix and update our list of component edges for each non-
zero value. For each component label encountered in the
loop, we update the corresponding properties in the hash
table. At this stage of the Distributed GTG implementation
we leverage sequential programming techniques to write
algorithms that consume fewer resources (see Table 2).

 Cartesian
product

In-place
Iteration

Average Number of
Components per

Frame
n n

Number of Matrix
Products n2 1

Table 2: Algorithmic analysis of the single task to the GTG construction
approaches

Figure 9 provides the job runtime achieved on the 4-node
cluster between the two task implementations.

Figure 9: The job runtimes of the task approaches to the graph construction
in the GTG. The matrices are randomly generated, factoring out the I/O
latency incurred by ingesting physical data. Note that the component-wise
Cartesian product implementation cannot scale beyond frames of 1000 x
1000. The in-place iteration approach scales to frames of 3000 x 3000. This
is close to a terabyte of data being processed.

The final Distributed GTG is presented using the
MapReduce paradigm in Figure 10. It is worth noting that
optimizations, such as pre-aggregations over partitions
containing consecutive time-frames, can be achieved by
using an extra data structure to perform an In-Mapper
aggregation. We do not describe such optimizations here as
Apache Spark optimizes the DAG execution plan it
generates.

Figure 10: The Distributed GTG algorithm using the MapReduce paradigm
in SciSpark

E. Latency Trade-Offs with Apache Spark
We observed that Spark successfully mitigates I/O

latency by only spilling to disk when necessary. However,
Spark’s reliance on the JVM combined with its greedy
usage of memory has introduced another significant source

1: class Mapper

2: // a time-frame id represents the actual
date/timestamp when the data was gathered.

3: method MAP(key frameId, sciTensor r)

4: EMIT(frameId, r)

5: // the (frameId + 1) operation outputs the next
sequential frameID

6: EMIT(frameId + 1, r)

1: class Reducer

2: method Reduce(key frameId, sciTensors [r1, r2, . .
.])

3: // Avoids using first and last frames

4: If sciTensors.length == 2 Then

5: // label the components inside each sciTensor

6: AL = labelComponents(sciTensors[0])

7: BL = labelComponents(sciTensors[1])

8: // outputs the edge found between those
consecutives time-frames

9: EMIT (overlappingComponents(AL, BL))
10: EndIf

1965

of latency in SciSpark, namely Java’s “stop-the-world”
garbage collection. We observed for matrices larger than
2500 x 2500 approximately 20 - 25% of the task time is
waiting on garbage collection.

IV. CONCLUSIONS AND FUTURE WORK
SciSpark provides an API that abstracts the methods to

ingest scientific data into a distributed pipeline away from
the end scientist user. For future work a solution that does
not tightly couple reading hierarchical files with the HDFS
version is required. One idea is to use binaryFiles to read the
entire NetCDF files or binaryRecords to read specific
offsets. The netCDF API would need to be integrated into
these methods.

SciSpark abstracts the ND4J and Breeze linear algebra
libraries behind a common interface for evaluation
purposes. The performance of current and future multi-
dimensional array Java libraries needs to be consistently
evaluated. Towards this effort, SciSpark’s design will
provide seamless access to operations on multi-dimensional
scientific datasets.

The SciSpark API provides developers with a clean
architecture for contributing new methods to partition,
extract, transform and load data from different
formats. Partitioning in time was tested in this research. For
future work, partition and extraction methods in the
SciSparkContext of the API will be explored to achieve
range partitioning in other dimensions.

Within SciSpark, we are able to process high resolution
grids using a complex sequential-based algorithm without
compromising on the original matrix size.

Our case study demonstrated that copying of data can
lead to better use of resources in distributed applications.
For the distributed implementation of GTG, it was found
that creating a copy of the input data allowed for
maintaining the chronological order necessary for the graph
creation. This finding supports SciSpark’s architectural
design in the processing layer of creating a cache space for
large jobs.

We found that SciSpark’s architecture supports
leveraging the advantages of both distributed and sequential
programming to complete user-defined problems. The
recommended approach is to construct jobs for parallel
work while utilizing the shared-memory state of each
independent task.

While the Cartesian product coupled with the filter is a
powerful API feature for generating pairs, it is infeasible for
Big Data applications. End users framing a Big Data
problem should reformulate it within the MapReduce
paradigm from the onset.

ACKNOWLEDGMENT
We acknowledge the AIST for the funding of this

research under NASA proposal number 14-AIST-14-0034.
Rahul Palamuttam and Renato Marroquín Mogrovejo would
like to acknowledge the JPL Summer Internship Program for
the opportunity and group 398M at JPL. We would also like

to acknowledge the Apache Spark community and the ND4J
developers.

REFERENCES
[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: Simplified Data

Processing on Large Clusters." Communications of the ACM 51, no. 1
(2008): 107-13.

[2] Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. "Spark: Cluster Computing with Working
Sets." Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud'10), 2010, 10.

[3] Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing.” Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation (NSDI'12). 2012, 2-2.

[4] Zitting, Jukka L., and Chris A. Mattmann. Tika in Action. Manning,
2012.

[5] Buck, Joe B., Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos
Maltzahn, Neoklis Polyzotis, and Scott Brandt. "SciHadoop: Array-
based Query Processing in Hadoop." Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC '11, 2011.

[6] Wilson, B. D., C. A. Mattmann, D. E. Waliser, J. Kim, P. Loikith, H.
Lee, L. J. McGibbney, and K. D. Whitehall. "SciSpark: Highly
Interactive and Scalable Model Evaluation and Climate Metrics." In
AGU Fall Meeting Abstracts, vol. 1, p. 3772. 2014.

[7] Mattmann, C.A. “SciSpark: Interactive and Highly Scalable Climate
Model Analytics”. Presentation. Earth Science Technology Office,
2015.

[8] Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E.
Waliser. "Classifying reanalysis surface temperature probability
density functions (PDFs) over North America with cluster
analysis." Geophysical Research Letters 40, no. 14 (2013): 3710-
3714.

[9] Whitehall, Kim, Chris A. Mattmann, Gregory Jenkins, Mugizi
Rwebangira, Belay Demoz, Duane Waliser, Jinwon Kim et al.
"Exploring a graph theory based algorithm for automated
identification and characterization of large mesoscale convective
systems in satellite datasets." Earth Science Informatics: 1-13.

[10] Rew, Russ, and Glenn Davis. "NetCDF: an interface for scientific
data access."Computer Graphics and Applications, IEEE 10, no. 4
(1990): 76-82.

[11] NCSA HDF Calling Interfaces and Utilities, Version 3.0, National
Center for Supercomputing Applications, Univ. of Illinois at Urban-
Champaign, Nov. 1989.

[12] Rosen, Joshua. “PySpark Internals”.
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Interna
ls (accessed September 1, 2015).

[13] Skymind. “ND4J: Scientific Computing for
Java”. http://nd4j.org/about.html (accessed September 1, 2015).

[14] Hall, David. “Scala NLP: Scientific Computing, Machine Learning,
and Natural Language
Processing”. http://www.scalanlp.org/documentation/ (accessed
September 1, 2015).

[15] Goto, Kazushige, and Robert Van De Geijn. "High-performance
implementation of the level-3 BLAS." ACM Transactions on
Mathematical Software (TOMS) 35, no. 1 (2008): 4.

[16] Kempler, Steve. “NCEP/CPC 4km Global (60N – 60S) IR Dataset
Product Description”.
http://mirador.gsfc.nasa.gov/collections/MERG__001.shtml (accessed
September 30, 2015).

