
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1949

An Optimized Interestingness Hotspot Discovery
Framework for Large Gridded Spatio-temporal

Datasets

Fatih Akdag
Computer Science Department

University of Houston
fakdag@uh.edu

Christoph F. Eick
Computer Science Department

University of Houston
ceick@cs.uh.edu

Abstract—We define interestingness hotspots as contiguous
regions in space which are interesting based on a domain
expert’s notion of interestingness captured by an
interestingness function. This paper centers on finding
interestingness hotspots on very large gridded datasets which
are quite common in scientific computing. Mining large
gridded datasets with a lot of variables and measurements
requires a scalable framework that can process large amounts
of data in an efficient way. In our recent work, we proposed a
computational framework which discovers interestingness
hotspots in gridded datasets using a 3-step approach which
consists of seeding, hotspot growing and post-processing steps.
In this paper, we significantly improve the efficiency of the
framework by utilizing parallel processing and employing
more efficient data structures and algorithms. We propose a
novel heap-based hotspot growing algorithm which brings
down the cost of hotspot growing phase significantly. In
addition, we propose a graph-based preprocessing algorithm
which decreases the number of hotspots grown by merging
some hotspot seeds. Other improvements to the framework
involve incremental calculation of interestingness functions,
and growing hotspots in parallel. The improved framework is
evaluated in a case study for a very large 4-dimensional
gridded air pollution dataset in which we find interestingness
hotspots with respect to pollutants.

Keywords—Interestingness Hotspot, Spatio-temporal Data
Mining, Interestingness Function, Hotspot Discovery, Hotspot
Growing Algorithm, Gridded Dataset

I. INTRODUCTION
We define interestingness hotspots as contiguous regions

in space which are interesting based on a domain expert’s
notion of interestingness which is captured in an
interestingness function. Our research centers on finding
interestingness hotspots on very large gridded datasets
which are quite common in scientific computing: Many
scientific disciplines such as optometry, earth and
atmospheric sciences, medicine, and ecology produce large
amounts of samples relying on spatial grid-structures that
identify locations where measurements are taken. This leads
to very large gridded datasets with a lot of variables and a
large number of measurements recorded, posing challenging
problems on how to store, query, summarize, visualize and

mine such datasets. Coping with the mentioned challenges
requires a scalable computational framework for processing
large amounts of data.

Typically, spatial or spatio-temporal clustering
algorithms have been used to analyze such datasets;
however, in our recent work [1], we proposed an alternative,
non-clustering approach to obtain interestingness hotspots,
which grows interestingness hotspots from seed hotspots,
and then post-processes the obtained hotspots to remove
highly-overlapping hotspots.

In this paper, we improve the proposed hotspot
discovery framework using the following approaches:

1) A graph-based preprocessing algorithm is introduced
that decrease the number of hotspots grown by
merging some hotspot seeds.

2) Another preprocessing algorithm is introduced that
eliminates hotspot seeds which are included in an
already grown hotspot.

3) A heap-based hotspot growing algorithm is proposed
that is much more efficient than the previously used
hotspot growing algorithm.

4) Incremental (online) calculation of various
interestingness functions are provided to improve the
runtime complexity of the hotspot growing algorithms.

5) Parallel processing frameworks are used to speedup
hotspot growing phase

6) The improved interestingness hotspot discovery
framework is evaluated in a case study involving a
challenging, very large 4-dimensional gridded air
pollution dataset.

The rest of the paper is organized as follows. In Section
2, we describe the hotspot discovery framework. Section 3
provides a brief discussion of our methodology. We present
the improvements on the existing framework in Section 4
and experimental evaluation in Section 5. We review the
related work in Section 6 and Section 7 gives a conclusion
of the paper.

1950

II. OVERVIEW OF INTERESTINGNESS HOTSPOT DISCOVERY
FRAMEWORK

In this section, we give a brief description of the
framework for discovering hotspots in gridded datasets
using interestingness functions. For a more detailed
discussion of the framework, we refer to the original paper
[1].

A. Framework for Spatio-temporal Interestingness
Scoping
Interestingness hotspots are contiguous areas in space

for which an interestingness function i assigns a reward
w≥0, indicating “news-worthy” regional associations. Our
goal is to mine spatio-temporal patterns for performance
attributes in a predefined space. The scope of an
interestingness hotspot is a contiguous spatio-temporal
region for which the association is valid; validity is assessed
using interestingness functions. More formally, we assume a
gridded dataset O is given in which objects o∈O are
characterized by: a set of performance attributes P, a set of
spatial attributes S, a set of temporal attributes T, a set of
continuous attributes M, which provide meta data under
which the performance attributes P are analyzed in the
spatio-temporal space. Moreover, we assume a spatial
neighboring relationship N is given

 N⊆O×O
that describes which objects belonging to O are neighbors.
N is usually computed using spatio-temporal attributes S∪T
of objects in O. Finally, we assume that we have an
interestingness measure

 i:2O→{0}∪ℜ+
that assesses the interestingness of subsets of the objects in
O by assigning rewards to a particular cluster H. Moreover,
we assume an interestingness threshold θ is given that
defines which patterns are interesting.

The goal of this research is to develop frameworks and
algorithms that find interestingness hotspots H⊆O; where H
is an interestingness hotspot with respect to i if the
following 2 conditions are met:

1. i(H) ≥θ

2. H is contiguous with respect to N; that is, for each
pair of objects (o,v) with o,v∈H, there has to be a path from
o to v that traverses neighboring objects (w.r.t. N) belonging
to H. In summary, interestingness hotspots H are contiguous
regions in space that are interesting (i(H) ≥ θ).

B. Example Interestingness Functions
The most simplistic interestingness ip measure we can

think of is one that directly uses the value of a single
performance attribute p, which is defined as follows:

where H⊆O is an interestingness hotspot, |H| denotes
cardinality of H and h.p denotes the value for attribute p for
cell h in H.

Another interestingness function considers the
correlation of two performance attributes p1 and p2; the
corresponding interestingness function icorr(p1,p2) is defined as
follows:

where 0 < θ < 1 is the interestingness threshold, and
correl(H,p1,p2) is the correlation of attributes p1 and p2 with
respect to the grid-cells belonging to hotspot H. This
interestingness function is used to find regions in a dataset
where the performance attributes p1 and p2 are correlated and
therefore allows for the identification of regional correlation
patterns in spatial datasets which is needed for commercial
applications, such as geo-targeting.

Finally, variance interestingness function considers the
variance of a performance attribute p and we define the
corresponding interestingness function ivar (p) as follows:

where θ > 0 is the variance threshold, and variance(H,p) is
the variance of an attribute p with respect to the grid cells
that form hotspot H. This interestingness function is used to
find regions in a dataset where the performance attribute p
does not change significantly. The obtained hotspots can be
used to generate maps for the performance attribute and for
generating prediction models for the performance
attribute—similar to regression trees,

C. Computing Interestingness Hotspots
There are two different approaches for finding

interestingness hotspots in gridded datasets. First approach
is to use clustering techniques for mining gridded datasets.
One clustering approach [5] works by dividing the dataset
into smaller regions and then merges the pair of neighboring
regions which yields the highest overall reward when
merged. Merging continues until there are no merge
candidates left and returns a set of disjoint regions which
have the maximal sum of rewards.

In this research we focus on a hotspot discovery
framework, again, we divide the region into smaller regions,
however, instead of merging regions, we firstly identify
some small regions with high reward as seed regions and
then grow these seed regions by adding neighboring objects
which increase the reward most when added. Since we grow
multiple seed regions, some of them may overlap after
growing and we apply post processing to deal with
overlapping hotspots. We focus on the latter approach which
we believe has a much higher novelty value and more
potential to compute “better”, more interesting hotspots, as
the clustering approach searches for all hotspots in parallel,
being forced to make compromises, as switching one sub
region from one to another cluster might increase the reward
of one cluster but decrease the reward of the other cluster.
On the other hand, the main advantage of the clustering
approach is that the obtained interesting hotspots are
disjoint, whereas the hotspot discovery approach has to deal

1951

with overlapping hotspots, which requires a post-processing
step that is not necessary for the clustering approach.

III. OVERVIEW OF HOTSPOT DISCOVERY ALGORITHM
In this section, we briefly describe the interestingness

hotspot discovery algorithm which works in 3 phases:

1) Find small hotspots with high interestingness

2) Grow the hotspots found in Phase 1

3) Post-process hotspot regions found in Phase 2 by
removing highly overlapping hotspots.

A. Phase 1: Seeding Phase
In this phase, we identify small regions with high

interestingness in the dataset, which we call “hotspot seeds”
and grow these seeds in Phase 2 to obtain larger hotspots.
The whole dataset is firstly divided into small sub regions of
same sizes and for each region an interestingness value is
calculated using the plugin interestingness function. The
framework allows user defined seed sizes. We refer to these
smaller regions as “seed candidate regions”. A “seed
interestingness threshold” is used to determine which seed
candidate regions will be used to grow larger hotspots. Seed
candidate regions having an interestingness value larger
than the “seed interestingness threshold” are grown in
hotspot growing phase.

B. Hotspot Growing Phase
We proposed a hotspot discovery algorithm in our

previous work[1] which grows seed regions by adding a
new cell in each step. This method grows hotspots by
adding a neighboring grid cell in each step by finding the
neighbor which will increase the reward function the most
when added to the region. This neighbor is then added into
the region and region’s neighbors list is updated with the
neighbors of the newly added grid cell which are not already
a neighbor or already in the region. We memorize the best
hotspot obtained so far and its reward value, and update this
information when a “hotter” hotspot has been found. We
continue adding neighbors as long as the region’s
interestingness remains positive. Our previous
implementation used to stop growing of a hotspot if an
improvement cannot be obtained in a predefined number of
consecutive steps. We observed that once a hotspot’s reward
start decreasing, it is quite possible that it start increasing
again after a while and it is hard to predict this threshold.
Thus, we updated the algorithm to grow the hotspot as long
as the hotspot’s interestingness remains positive.

Computational complexity of the hotspot growing phase
is O(|H|) × O(RH) for each iteration of a hotspot where |H| is
the cardinality of an hotspot and O(RH) is the runtime
complexity of calculating the reward value. In each
iteration, reward value with each neighbor is calculated and
the number of neighbors is of order O(|H|). As the number
of objects increase in each iteration, a hotspot grows from h0
initial elements to n elements, and if O(RH) = O(H) the
runtime complexity of growing a hotspot is:

 If the interestingness function is calculated
incrementally in O(1) time, then the complexity can be
reduced to O(n2).

Neighborhood definition is a plugin function in the
framework. In our current implementation, we define two
grid cells as neighbors if only one of the dimensions differ
and the difference is 1. Following is the neighborhood
definition for a 4D dataset with x, y, z, and t dimensions:

 (5)
where o1 and o2 are two grid cells and oi..x corresponds to x
dimension value of oi. Depending on the application
domain, various neighborhood definitions can be defined.

C. Phase 3: Post-processing algorithms to remove
overlapping hotspots
Hotspot growing phase usually creates large number of

hotspots with high degree of overlaps. In this phase, we try
to remove specific overlapping hotspots in order to
eliminate redundant hotspots. To do this, we set an overlap
threshold and find an optimal set of hotspots that overlap
less than the threshold value while maximizing the total
reward. More formally, the post processing problem can be
defined as follows: Given a set of hotspots S, and an
overlap threshold λ, find a subset S’⊆S for which ∑H∈S i(H)
is maximal, subject to the following constraint:
∀H∈S’∀H’∈S’ λ≥overlap(H,H’) where degree of overlap
is measured by:

(6)
The degree of overlap of two hotspots is the ratio of the
number of grid cells that are shared between both hotspots
to the number of grid cells in the smaller hotspot. For
example, if one hotspot has 100 grid cells, and another one
has 80 grid cells and they share 60 grid cells, then the
degree of overlap is 60/80 = 0.75. In definition (6), the
number of grid cells in the smaller hotspot is used in the
denominator to make sure that hotspots which are
completely contained in another hotspot can be eliminated.
Alternatively, the total number of grid cells in both hotspots
could be the denominator, however, if hotspot A with 1000
grid cells completely contains all grid cells in the hotspot B
which has 100 grid cells, then the overlap ratio would be
100/1100 = 0.09, which implies a very low degree of
overlap. We overcame this problem by using definition (6).

The proposed preliminary post-processing algorithm in
[1] used to iterate over pairs of hotspots that are overlapping
to a degree more than λ and remove the hotspot with the
lower interestingness. The algorithm was not finding the
optimal set of non-overlapping hotspots with the largest
total reward value. We replaced this algorithm with a graph-
based algorithm that finds the optimal set of non-
overlapping hotspots, however it is a subject of another
paper which is not published yet.

1952

IV. IMPROVEMENTS
In this section, we present the improvements for each

phase of the hotspot discovery framework.

A. Seeding Phase
The seeding phase divides the region into smaller

regions of same size and finds the ones with the higher
interestingness which are grown in phase 2. However, we
observed that many of these smaller regions grow to the
same (or quite similar) regions. This is not surprising as a
large hotspot with high interestingness will usually have
smaller sub-regions with very high interestingness. A Case
study reported in [1] justifies that the hotspots created by
seed regions that grow to the same region are either same or
very close to each other in shape and size. Obviously, it is
better to eliminate some of these seed regions before
growing them. We propose the following technique to
reduce the number of seed regions grown:

1) Find neighboring seed regions

2) Create a neighborhood graph of seed regions where each
seed region is a node. Create an edge between nodes if the
corresponding regions are neighbors and if the union of
these regions yields a region with an acceptable reward
value. A merge threshold is used to assess if the union of
these regions is acceptable.

3) Merge the seed regions connected by an edge starting
with the pair that yields the highest reward gain when
merged.

4) Update neighborhood graph after the merge operation.
Create an edge between the new node and neighbors of the
merged nodes using the same procedure.

5) Continue merging seed regions as long as there are
nodes to be merged (i.e. edges) in the graph.

This algorithm is similar to MOSAIC [5] clustering
algorithm, however is implemented using more efficient
data structures, and creates the neighborhood graph using a
undirected graph with weighted edges instead of a Gabriel
Graph. We use an additional HashSet data structure to keep
a list of nodes instead of an Array to ensure minimum
add/remove and containment check time complexity as a
HashSet data structure has O(1) time complexity for all of
these operations. Moreover, we use a Heap data structure
[17] to keep the list of edges. A heap is a special tree
structure that satisfies the heap property: All nodes are
either ‘greater than or equal to’ or ‘less than or equal to’
each of its children, according to a comparison predicate.
Heaps are mostly used for priority queues and in this
problem we need to prioritize the edges that will be
processed. The edge connecting the pair of nodes which
results the highest reward gain when merged is the root of
the heap. Heap data structure has O(logn) time complexity
for extract-max operation, so less time is spent for finding
the next merge candidate; and O(logn) time complexity for
add operation as we add new edges for the new region after
a merge operation. MOSAIC uses an array structure for
keeping the clusters and merge candidates which require

O(n) time for all of these operations. Furthermore, we
require that the merge operation yields a region with an
acceptable reward. That is, we do not want to create
hotspots with low rewards as a result of merging two seed
regions. This is also consistent with the objective of the
post-processing algorithm—to get the set of hotspots with
the highest total reward. We use a merge threshold µ to
define if the union of seed regions is acceptable. If the
reward of the new region is higher than the total reward of
merged regions multiplied by µ, then the merge is
acceptable:

 merge(s1, s2) if R(∪(s1,s2)) > (R(s1) + R(s2)) * µ (7)
where R(si) represents the reward of seed region si. Fig. 1
depicts pseudocode for the seed preprocessing algorithm
and Fig. 2 depicts the merge procedure which merges seed
regions connected by an edge. We assign the reward gain
which is calculated by R(∪(si,sj)) - (R(si) + R(sj)) as the weight
of an edge (line 10 in Fig. 1). The edge with the highest
reward gain is the root of the heap tree and processed first.

1: Create an undirected graph G and HashSet S of seed regions
2: foreach seed region si
3: Add si to G as a vertex
4: Add si to S
5: end foreach
6: for i = 0 to number of seed regions – 1
7: for j = i + 1 to number of seed regions
8: if si and sj are neighbors and R(∪(si,sj)) > (R(si) + R(sj)) * µ then
9: Create an edge e connecting nodes si and sj
10: e.weight = R(∪(si,sj)) - (R(si) + R(sj))
11: G.AddEdge(e)
12: end if
13: end for
14: end for

15: Create a max-Heap H of edges
16: foreach edge e in G.edges
17: H.enqueue(e, e.weight)
18: end foreach

19: while H has elements
20: nextEdge = H.dequeue()
21: if S contains both nodes connected by nextEdge then
22: Merge(nextEdge)
23: end if
24: end while

Fig. 1. Pseudo-code for preprocessing algorithm

While processing edges in the order of descending
weights, it is possible that an edge which is still in the heap
might have been removed from the graph by merge
procedure as a result of merging one of the connected nodes
in a previous step. That edge might still be in the heap as the
heap data structure does not support deleting a particular
node. In that case, the dequeue operation will return an edge
that does not actually exist in the graph. So, we check if
both nodes connected by the edge exist in the set of seed
regions to make sure that both nodes survive (line 21 in Fig.
1); otherwise we just skip processing that edge.

1953

1: Procedure Merge (Edge e)
2: Set s1 = e.source, s2 = e.target
3: Merge s1 and s2 by adding all elements in s1 and s2 in a new region snew

4: Add snew into G as a new vertex
5: Remove e from G
6: foreach neighbor si of s1 connected by edge ei

7: if R(∪(si,snew)) > (R(si) + R(snew)) * µ then
8: Create an edge enew connecting nodes si and snew
9: enew.weight = R(∪(si,snew)) - (R(si) + R(snew))
10: G.AddEdge(enew)
11: G.RemoveEdge(ei)
12: end if
13: end foreach
14: foreach neighbor sj of s2 connected by edge ej

15: if R(∪(sj,snew)) > (R(sj) + R(snew)) * µ then
16: Create an edge enew connecting nodes sj and snew
17: enew.weight = R(∪(sj,snew)) - (R(sj) + R(snew))
18: G.AddEdge(enew)
19: G.RemoveEdge(ej)

20: end if
21: end foreach
22: Remove s1 and s2 from the graph G and HashSet S
23: Add snew into HashSet S
24: end procedure
Fig. 2. Pseudo-code for Merge operation

B. Hotspot Growing Phase
In this phase, we present four different optimization

techniques and a new hotspot growing algorithm.

1) Eliminate contained seed regions
As many seed regions grow to the same hotspot, it is

possible to anticipate if an un-grown seed region will grow
to a hotspot which was already discovered by growing
another seed region. Before growing a seed region, we
check if it is already contained in an already grown seed
region and if so, we do not grow it. In most cases, this
optimization work pretty well and eliminates seed regions
which would grow to an already discovered hotspot.
However, it is still possible that a seed region eliminated by
this method could possibly create a hotspot with a higher
interestingness if it were grown. In order to minimize this
possibility, we sort seed regions in the decreasing order of
initial interestingness and grow them in this order.
Obviously, a seed region with a higher interestingness value
has a higher chance of growing a hotspot with higher
interestingness.

However, it is not trivial to decide if a seed region is
contained by a hotspot. In most cases, some grid cells in the
seed region are not included in a hotspot which covers the
seed region. Thus, we use a containment threshold to decide
if the seed region will be grown or not. If the containment
threshold is set to 0.9, then 90% of the grid cells in the seed
region needs to be included in a hotspot to eliminate this
seed region. We use thresholds higher than 0.9 in our
framework implementation. This threshold can be set to
different values depending on the application domain. We
use the algorithm in Fig. 3 to calculate if a hotspot contains
a seed region.

1: Procedure checkContainment(hotspot, seed)
2: set maxExcludedAllowed = seed size * (1- ContainmentThreshold)
3: set numNotIncluded = 0
4: foreach grid cell in seed
5: if hotspot does not contain cell then
6: numNotIncluded = numNotIncluded + 1
7: if numNotIncluded >= maxExcludedAllowed then
8: return false
9: end if
10: end if
11: end foreach
12: return true
13:end procedure

Fig. 3. Pseudocode for containment check algorithm

Since we use a HashSet to keep list of grid cells in a
hotspot, calculating the number of grid cells in the seed
region which are included in a hotspot only takes O(|s|) time
where |s| is the size of the seed region. We further optimize
this procedure and use the algorithm in Fig. 3 which
prematurely stops calculating (in line 8) when a minimum
number of cells not included in the hotspots is reached. For
two completely separated regions, if the containment
threshold is set to 0.9, this procedure returns the result in
|s|/10 iterations.

2) Heap-based hotspot growing algorithm
In this subsection, we introduce a novel heap-based

hotspot growing algorithm. In hotspot growing phase, we
search the best neighbor among all neighbors in each step,
and after each time we add a new neighbor we do this
search again. Searching the most fit neighbor each time
takes the complexity of hotspot growing algorithm to O(n2)
at least where n is the number of grid cells in the hotspot,
assuming reward function is calculated incrementally.
However, we observed that the ordering of the neighbors
according to their ‘fitness’ for the region does not change
much as the region grows. If a neighbor n1 increases the
reward more than the neighbor n2 when evaluated in step si,
this usually means that n1 is still a better fit to be included in
the region for another step sj. There are some cases in which
this does not hold; if the attributes of n1 and n2 are very
close, as the region grows n2 may become a better fit for the
region. However, such cases occur very rarely and do not
affect the final hotspot dramatically as both neighbors are
generally either included in or excluded from the hotspot.
Thus, it is redundant to evaluate each neighbor in each step
of the growing phase. Instead, we use a max-heap data
structure to keep the list of neighbors where the neighbor
with the highest fitness value is the root of the heap tree.
Using a max-heap, instead of searching for the best
neighbor in each step, we simply add the root node into the
region. When new neighbors are encountered as a result of
growing the hotspot, we assign each new neighbor a fitness
value by evaluating the reward gain in case the neighbor is
added to the region and add it into the heap using the reward
gain as the priority. Next, we continue growing the region as
long as there are more neighbors and the interestingness of
the region is higher than the interestingness threshold.

Heap data structure has O(logn) time complexity for
extracting the root node (extract-max operation), insertion
and deletion operations. Some specialized heap

1954

implementations (Binomial heaps and Fibonacci heaps [17])
allow amortized O(1) time complexity for insertion. Figure
4 gives the pseudocode of heap based hotspot growing
algorithm. This procedure is called in a loop as long as the
interestingness of the region remains positive and there are
more neighbors in the heap. The best reward found is
memorized (lines 11-14) and when hotspot growing is
finished, the hotspot is set back to this state. The runtime
complexity of the heap-based hotspot growing algorithm is
O(nlogn) as a total of O(logn) time is spent in each step
where n is the number of objects in the hotspot—O(logn)
time is spent for finding the best neighbor and removing it
from neighbors list, plus O(1) for adding it to the region and
O(logn) for adding neighbors of newly added object to the
neighbors list. Before adding the neighbors of the newly
added object to the heap—there are at most 8 neighbors
according to the neighborhood definition (5)—we need to
ensure that the neighbor is not contained in the region or in
the neighbors list. To optimize this containment check time
complexity, we keep the objects in the region in a HashSet.
Furthermore, in the implementation of max-heap data
structure, we put all elements in the heap into an additional
HashSet data structure and manage them together to
minimize containment check operation time complexity.
1: Procedure AddNextNeighbor(region)
2: set bestNeighbor = Heap.dequeue()
3: add bestNeighbor to region
4: set newReward = CalculateReward(region)
5: foreach neighbor n of bestNeighbor
6: if n is not in region and n is not in the neighbors list then
7: set fitness = CalculateFitness(region, n)
8: Heap.enqueue(n,fitness)
9: end if
10: end foreach
11: if newReward > region.alltimeBestReward then
13: set region.alltimeBestReward = newReward
12: set region’s alltimeBestGridCells = region.currentGridCells
14: end if
15: end procedure

Fig. 4. Pseudocode for heap-based hotspot growing algorithm

This optimization requires choosing a good fitness
measure for each neighbor of the growing hotspot. New
neighbors are evaluated with a different state of the growing
hotspot. Thus, it is very important to put the new neighbors
in a correct order in the list of neighbors ordered by
decreasing fitness values. A sample fitness function is given
in the experimental evaluation section.

3) Incremental calculation of interestingness functions
As mentioned in Section 3, calculating the

interestingness function incrementally dramatically
decreases the runtime complexity of hotspot growing phase.
In this subsection, we show how to calculate interestingness
functions incrementally. Incremental calculation means that
as new data comes, a function’s output when applied on a
dataset is calculated without going over the previous data.
For example, count or sum of elements in a dataset can be
calculated incrementally by just increasing the value of a
variable, instead of counting or adding all numbers again. It
should be noted that some functions cannot be calculated
incrementally. Aggregate functions are categorized as

distributive, algebraic or holistic [18]. Distributive functions
can be computed in a distributive manner by partitioning the
data into subsets, and aggregating the result of applying the
function to each subset. Sum, count, min, max are some
example distributed functions. Algebraic functions can be
computed by applying an algebraic function on a constant
number of distributive functions. For example, average
function is an algebraic function as it can be computed by
sum/count. Holistic functions cannot be computed by
applying an algebraic function on a constant number of
distributive functions, thus all data needs to be processed
together. As a result, unlike distributive and algebraic
functions, holistic functions cannot be calculated
incrementally. Median and rank are examples to holistic
functions. In this section we describe a methodology for
implementing a given algebraic or distributive function
incrementally, using variance function as an example.

Given an empty set of objects R, we are supposed to
calculate the variance of attribute a incrementally while
adding new objects into R where each object has an attribute
a. It is shown in the literature [19, 20] that variance can be
calculated incrementally by updating the mean and sum of
squared differences (M2) with each new value x using the
following equations:

meann = meann-1 + (x – meann-1) / n , and

M2 = M2 + (x – meann-1) × (x – meann)

Then the variance can be calculated in O(1) time by:

variance(R, a) = M2 / (n-1)

where n is the number of objects in the dataset. We use the
same equation in our code to calculate variance in O(1) time
when a new grid cell is added to a region. From a software
design perspective, we create a new class named
“StatsCalculator” which keeps a reference to n, mean and
M2. Each region has its own copy of StatsCalculator object.
Each time we add a new object to a region, we call the
procedure “Add(x)” in StatsCalculator class, which updates
these values using x. When we need to retrieve the variance
value for the region, we call “variance()” procedure which
just returns M2/ (n-1).

Calculating correlation function incrementally is similar but
more complicated. We will not present the details as space
is limited and refer to literature [20].

4) Parallel processing of hotspot growing phase
Hotspot growing phase can be easily processed in

parallel by assigning a seed region to be grown for each
processor. In our implementation we use a shared memory
parallel programming approach. The framework was
implemented using .NET Framework, and we use TPL (task
parallel library) which is Microsoft’s shared memory
parallel programming implementation for the .NET
framework. A parallel for loop is used in our
implementation which assigns seed regions to multiple
threads as threads become available. The framework itself
optimizes the number of threads created to complete the
loop as fast as possible while trying to optimize system

1955

resources and assigns tasks to threads when threads become
available.

V. EXPERIMENTAL EVALUATION
In this section, we present experiments in which we

evaluate the effectiveness of the algorithms we propose in
this paper. We evaluated our framework on a very large 4-
dimensional gridded air pollution dataset. We find high
correlation hotspots and low variance hotspots with respect
to pollutants in the dataset. The air pollution dataset [6]
provided by EPA (Environmental Protection Agency)
contains 132 air pollutant observations divided to 4km by
4km square grids on latitude and longitude dimensions, and
27 layers of various heights on altitude dimension. The total
area is covered by 84 grid cells on latitude dimension which
correspond to the columns of the grid, and 66 grid cells on
longitude dimensions which correspond to the rows of the
grid. The concentrations of air pollutants and meteorological
variables are recorded in each hour for each grid cell.
Storing all observations for a day in raw binary format takes
1.8 GB memory space. For the case study, we use a subset
of grid cells covering the city of Houston which includes 26
columns, 19 rows and 27 layers (13338 grid cells). One day
of air pollution data covering the city of Houston includes
320112 observations for each of 132 air pollutants in the
dataset.

In the next subsections, we will measure the
improvements obtained by each optimization. We ran all
test on a Windows computer with 4 processors.

A. Merging Seed Regions
We run hotspot discovery algorithms on air pollution

data to find low variation hotspots with different parameter
settings. We run test on different timeframes and merge
thresholds and measured the number of seed regions found,
number of seed regions grown and the total reward and
average variance of hotspots obtained after eliminating
overlapping hotspots. Table 1 lists the parameters applied,
and Table 2 lists the results for each test. We use the
variance interestingness function defined in (3) and set the
interestingness threshold to 0.65 and following reward
function is used for evaluating the quality of a region R:

 ϕ(R) = interestingness(R) × size(R)β (8)
where β>1 is a parameter determining the degree preference
for larger regions. We set β to 1.01 as we prefer smaller
hotspots with high interestingness to larger hotspots with
low interestingness. We set seed size to 3x3x3x1 for Test 1
and Test 2 and to 3x3x3x3 for Test 3 as Test 3 dataset is 4-
dimensional. Seed threshold was set to 0.65 for the Test 1 ad
Test 2 and 0.5 for Test 3.

TABLE I. TEST PARAMETERS

Test# Dataset Date Timeframe Merge Threshold
1 2013-09-01 12am (1hr) 0.96
2 2013-09-01 12am (1hr) 0.60
3 2013-09-01 6am-6pm (12hr) 0.96

TABLE II. TEST RESULTS

 Test 1 Test 2 Test 3
Seeds Found 27 27 233
Seeds Grown 23 17 79
Hotspots Found 8 7 9
Hotspots found
without merging 8 8 9

Average hotspot
variance 0.275 0.290 0.219

Average hotspot
variance without
merging

0.269 0.269 0.207

Total reward 1203 1163 63049
Total reward
without merging 1206 1206 63544

Merging seed regions affect the number of seed regions
grown. It is expected that the reward of hotspots may not be
as high when some seed regions are merged as the merge
operation causes some grid cells to be included in the
merged region which would not be included otherwise. The
test results show that the loss of total reward and the
variance increase are not significant. As shown in Test 2
results, decreasing the merge threshold obviously causes
more loss in the total reward (loss is 43 compared to 3 in
Test 1) as less compatible regions are merged. The runtime
of the seed preprocessing phase in all tests were much lower
than a second, taking at most 0.2 seconds in Test 3 in which
the number of seed regions reduced from 233 to 79 after 154
successive merge operations were applied. Figure 5 shows
some of the seed regions which were computed by
preprocessing seed regions. As shown in the figure, there
are many large regions which are composed of smaller seed
regions.

Fig. 5. Merged seed regions.

1956

Fig. 6. Neighborhood graph of a set of seed regions

Figure 6 shows a part of the neighborhood graph for a
set of seed regions that were merged by the preprocessing
algorithm. A grid structure is clearly visible in the
neighborhood graph. Vertices show each seed regions’
index and reward in parenthesis. Edge weights (edge
weight=reward gain, not gain ratio) are given next to each
edge. There is an edge between two vertices if their merge is
acceptable (i.e. gain ratio is larger than merge threshold).

The results show that preprocessing algorithm succeeds
in decreasing the number of seed regions dramatically
without affecting the final set of hotspots discovered when a
large merge threshold is used.

B. Eliminate contained seed regions
In this subsection, we will assess the effectiveness of

eliminating seed regions that are contained by an already
grown hotspot. We ran Test 1 described in the previous
section without running the seed preprocessing algorithm,
only to see the effects of this optimization by itself. When
we set the containment threshold to 0.9, number of seed
regions grown decreased from 27 to 17 as 10 hotspots were
eliminated by this optimization. After the post-processing
phase, only 8 hotspots survived and the total reward of those
hotspots was 1205, which would be 1206 if no optimization
would be done.

Next, we ran the same test by firstly preprocessing seed
regions and then eliminating contained seeds; the first step
decreased the number of seed regions to 23 as in Section 5.1
and out of these 23 regions another 6 of them were
eliminated by this optimization as some seed regions were
included in the grown hotspots. The total reward was still
1203 as in Section 5.1. This optimization is definitely very
effective in eliminating redundant seed regions.

All of the optimizations in our framework are optional,
so they can be used together or one can be chosen over

another one. In this case, the end result did not change
dramatically. Both algorithms succeeded in choosing the
right set of seed regions to be eliminated.

C. Heap-based hotspot growing algorithm
In this subsection, we evaluate the heap-based hotspot

growing algorithm and compare it with the previously
proposed hotspot growing algorithm. We chose three
sample hotspots from test cases in Section 5.1, ran the
legacy hotspot growing algorithm and the new heap-based
algorithm while calculating the reward function
incrementally. We used the following fitness function for a
neighbor ni of hotspot H:

 fitness (ni) = (R(H ∪ ni) – R(H)) / |H| (9)
where R(H∪ni) represents the new reward when ni is added
to the hotspot and |H| is the hotspot size. This fitness
function is used with variance interestingness function
defined in (3) and reward function defined in (8). When
there are more objects in the hotspot, adding a neighbor
effects the reward much less compared to a neighbor that is
added when the hotspot was smaller. This is due to the
nature of variance function which measures the average of
the squared differences from the mean, and calculated by
dividing the squared differences to the number of elements;
thus dividing the reward gain to hotspot size is required to
fairly compare the neighbors. Table 3 lists the test results.

TABLE III. TEST RESULTS OF COMPARING HEAP-BASED GROWING
ALGORITHM AND TRADITIONAL GROWING ALGORITHM

Hotspot # 1 2 3
Final hotspot
size (heap-
based)

15242 cells 790 cells 3121

Final hotspot
size (legacy) 15641 cells 832 cells 3165

Runtime
(heap-based) 5.9 seconds 23 ms 0.243 sec

Runtime
(legacy) 170 seconds 525 ms 8.8 sec

Table 3 shows that the efficiency of heap-based hotspot
growing algorithm is significantly higher than the traditional
algorithm. This is expected as heap-based hotspot growing
algorithm has O(nlogn) complexity compared to O(n2)
complexity of the legacy hotspot growing algorithm.
Moreover, the number of cells in the grown hotspots are
almost same for both algorithms which shows that the
employed fitness measure did work well.

D. Incremental (online) calculation of interestingness
functions
In this section we evaluate the performance gain by

calculating the variance interestingness incrementally. First
2 columns in Table 4 was reported in our previous work in
runtime analysis section. The growing time with the
incremental calculation using legacy and new hotspot
growing algorithms are added in the 3rd and 4th columns.

1957

TABLE IV. HOTSPOT GROWING PHASE EXECUTION TIMES FOR
THE 3D DATASET USING CORRELATION INTERESTINGNESS FUNCTION

hotspot size
(grid cells)

Growing time –
non-incremental

(sec)

Growing time –
incremental

(sec)

Using
heap

450 2 0.69 0.001

1251 25 1.47 0.058

2082 111 3.34 0.098

3933 705 7.1 0.3

Growing times of the hotspot growing algorithm using
the incremental reward calculation algorithm is dramatically
faster than the non-incremental reward calculation as the
runtime complexity decreases from O(n3) to O(n2).
Moreover, using the heap-based growing algorithm along
with incremental calculation makes the growing time orders
of magnitude faster (0.3 seconds compared to 705 seconds
for 3933 grid cells).

E. Parallel Processing of Hotspot Growing Phase
In this subsection we present the runtime improvements

obtained by growing hotspots in parallel. We grew all 79
seed regions that were found in Test 3 in Section 5.1 using
sequential and parallel processing and recorded the growing
times for each hotspot and total growing time for all
hotspots. We ran the test 5 times and took the average of
runtimes. We used a computer with 4 processors and as
shown in Table 5, parallel processing speedup is 977/354 =
2.75 and parallel efficiency is 2.75/4 = 0.6875. Although the
total running time improves using parallel processing, it
takes about 15 times slower to grow a hotspot as too many
threads are running at the same time sharing system
resources.

TABLE V. PARALLEL AND SEQUENTIAL GROWING TIMES

 Sequential Parallel
Average growing
time of a hotspot

12.2 sec. 184 sec.

Total growing time
of all hotspots

977 sec. 354 sec.

VI. RELATED WORK
Kulldorff [13] introduced basic spatial scan statistics to

search spatiotemporal circular regions occurring within a
certain time interval which obtains cylinder-shaped hotspots
by growing cylinders from a point of origin by increasing
the radius and height of the cylinder. Iyengar [9] extended
basic spatial scan statistics by using flexible square pyramid
shapes instead of cylinders for spatiotemporal clusters that
can grow, shrink or move over time.

There are many clustering algorithms capable of
computing spatio-temporal hotspots. However, in a
clustering approach all hotspots are obtained in a single run
of the clustering and the obtained clusters are always
disjoint in contrast to hotspot growing approaches. Many of
these algorithms extend DBSCAN [8] for performing

spatiotemporal clustering. Wang et al. [15] proposed two
spatiotemporal clustering algorithms called ST-DBSCAN
and ST-GRID. ST-DBSCAN introduces the second
parameter of temporal neighborhood radius in addition to
the spatial neighborhood radius in DBSCAN. ST-GRID is a
grid-based clustering approach, which operates on the
spatiotemporal observations in a 4D-gridstructure. Birant [2]
et al. also improved DBSCAN for spatiotemporal clustering
and applied it to discover spatiotemporal distributions of
physical seawater characteristics in Turkish seas. A density
factor is assigned to each cluster for detecting some noise
points when clusters of different densities exist. The density
factor of a cluster captures the degree of the density within a
particular cluster. Joshi [11] et al. proposed a spatiotemporal
polygonal clustering algorithm, called STPC, which extends
the DBSCAN algorithm to cluster spatiotemporal polygons
by redefining the neighborhood of a polygon as the union of
its spatial and temporal neighborhoods. When calculating
spatial neighbors for a polygon, the temporal aspect was
reduced to a fixed interval or time instance and was
therefore constant. Moreover, the spatial dimension was
instead held to a constant space when calculating temporal
neighbors of a polygon.

Another popular clustering algorithm SNN [7] (Shared
Nearest Neighbor) has also been extended for spatio-
temporal clustering by researchers. Oliveira et al. [14]
proposed an algorithm called 4D+SNN which allows the
integration of space, time and semantic attributes into the
clustering process. This algorithm is able to deal with
different data sets and different discovery purposes as the
user has the ability to weight the importance of each
dimension in the discovery process. Furthermore, two other
spatiotemporal clustering algorithms, called Spatiotemporal
Shared Nearest Neighbor clustering algorithm (ST-SNN)
and Spatiotemporal Separated Shared Nearest Neighbor
clustering algorithm (ST-SEP-SNN) [16], were proposed to
cluster overlapping polygons that can change their locations,
sizes and shapes over time. Both ST-SNN and ST-SEP-
SNN are also generalizations of the SSN clustering
algorithm.

All spatio-temporal clustering algorithms that were
discussed so far compute clusters based on only the distance
information. A new group of clustering algorithms has been
introduced in the literature which find contiguous clusters
by maximizing plug-in interestingness functions similar to
the approach used in this paper. These algorithms are
capable of considering non-spatial attributes in objective
functions that drive the clustering process. They maximize
the sum of the rewards for each cluster based on a cluster
interestingness function to compute clusters. CLEVER [3,4]
is a k-medoids-style [12] clustering algorithm which
exchanges cluster representatives as long as the overall
reward grows, whereas MOSAIC[5] is an agglomerative
clustering algorithm which starts with a large number of
small clusters, and then merges neighboring clusters as long
as merging increases the overall interestingness. We used an
algorithm similar to MOSAIC for pre-processing the seed
regions.

1958

VII. CONCLUSION
In this paper, we optimized our computational

framework for mining very large gridded spatio-temporal
datasets. Our framework grows hotspots from seed regions
using plugin interestingness and reward functions. Our
approach is quite different from traditional hotspot
discovery algorithms. To the best of our knowledge, this is
the only hotspot discovery algorithm in the literature that
grows seed regions using a reward function. We claim that
the proposed framework is capable of identifying a much
broader class of hotspots, which cannot be identified by
traditional distance-based clustering algorithms. We plan to
compare our framework with other approaches in a future
work.

In this paper, we presented very efficient preprocessing
algorithms to eliminate redundant seed regions. The
experimental evaluation section revealed that the
preprocessing algorithms succeeded in eliminating
redundant seed regions without affecting the quality of the
discovered hotspots. Moreover, we presented a new heap-
based hotspot growing algorithm which improved the
runtime efficiency of the hotspot growing phase
significantly. Parallel processing of hotspot growing phase
along with incremental calculation of interestingness
functions dramatically reduced the total time required to
discover hotspots. The experimental evaluations show that
the total speedup is in the orders of magnitude.

On the other hand, our framework is extensible. The
proposed algorithms are general and can be applied to
various kinds of data such as point sets and polygons. We
will work on adapting our framework to work with different
types of spatial data rather than just gridded datasets.

REFERENCES
[1] F. Akdag et al. “A computational framework for finding

interestingness hotspots in large spatio-temporal grids” in
Proceedings of the 3rd ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data. 2014, pp. 21-29.

[2] D. Birant and A. Kut. “ST-DBSCAN: An algorithm for clustering
spatial–temporal data”. Data & Knowledge Engineering 60.1. 2007,
pp. 208-221.

[3] Z. Cao et al. “Analyzing the composition of cities using spatial
clustering.” in Proceedings of the 2nd ACM SIGKDD International
Workshop on Urban Computing. ACM, 2013.

[4] C. S. Chen et al. “Design and Evaluation of a Parallel Execution
Framework for the CLEVER Clustering Algorithm” in PARCO.
2011, pp. 73-80.

[5] J. Choo et al. “MOSAIC: A proximity graph approach for
agglomerative clustering” in Data Warehousing and Knowledge
Discovery. Springer Berlin Heidelberg. 2007, pp. 231-240.

[6] EPA. (2015, June 30), Air Data Web Site. [Online] Available:
http://www.epa.gov/airquality/airdata/

[7] L. Ertöz et al. “Finding clusters of different sizes, shapes, and
densities in noisy, high dimensional data” in SDM. 2003, pp. 47-58.

[8] M. Ester et al. “A density-based algorithm for discovering clusters in
large spatial databases with noise” in KDD, 1996, vol. 96, no. 34, pp.
226-231.

[9] V. S. Iyengar. “On detecting space-time clusters.” in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2004, pp. 587-592.

[10] R. Jiamthapthaksin et al. “GAC-GEO: a generic agglomerative
clustering framework for geo-referenced datasets” in Knowledge and
Information Systems, 2011, 29(3), pp. 597-628.

[11] D. Joshi et al. “Spatio-temporal polygonal clustering with space and
time as first-class citizens” in GeoInformatica, 2013, 17(2), pp 387-
412.

[12] L. Kaufman, and P. Rousseeuw. “Clustering by means of medoids”
in Statistical Data Analysis Based on the L1 Norm and Related
Methods, North-Holland, Amsterdam, 1987, pp. 405–416.

[13] M. Kulldorff. “A spatial scan statistic” in Communications in
Statistics-Theory and Methods, 1997, 26(6), pp. 1481-1496.

[14] R. Oliveira et al. “4D+SNN: A Spatio-Temporal Density-Based
Clustering Approach with 4D Similarity” in Data Mining Workshops
(ICDMW), IEEE 13th International Conference on Data Mining
Workshops, 2013, pp. 1045-1052.

[15] M. Wang et al. „Mining spatial-temporal clusters from geo-
databases”. In Advanced Data Mining and Applications, Springer
Berlin Heidelberg, 2006, pp. 263-270.

[16] S. Wang et al. “New Spatiotemporal Clustering Algorithms and their
Applications to Ozone Pollution” in Proc. 8th International
Workshop on Spatial and Spatio-Temporal Data Mining, IEEE,
2013.

[17] T. H. Cormen et al. Introduction to Algorithms. MIT Press and
McGraw-Hill, 2009.

[18] S. Shekhar and S. Chawla. “Spatial databases: a tour”. Upper Saddle
River, NJ: prentice hall, 2003.

[19] B. P. Welford. “Note on a method for calculating corrected sums of
squares and products” in Technometrics, 1962, pp. 419-420.

[20] P. Pébay. "Formulas for robust, one-pass parallel computation of
covariances and arbitrary-order statistical moments" in Sandia
Report SAND2008-6212, Sandia National Laboratories. 2008.

