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Abstract—We define interestingness hotspots as contiguous 
regions in space which are interesting based on a domain 
expert’s notion of interestingness captured by an 
interestingness function. This paper centers on finding 
interestingness hotspots on very large gridded datasets which 
are quite common in scientific computing. Mining large 
gridded datasets with a lot of variables and measurements 
requires a scalable framework that can process large amounts 
of data in an efficient way. In our recent work, we proposed a 
computational framework which discovers interestingness 
hotspots in gridded datasets using a 3-step approach which 
consists of seeding, hotspot growing and post-processing steps. 
In this paper, we significantly improve the efficiency of the 
framework by utilizing parallel processing and employing 
more efficient data structures and algorithms. We propose a 
novel heap-based hotspot growing algorithm which brings 
down the cost of hotspot growing phase significantly. In 
addition, we propose a graph-based preprocessing algorithm 
which decreases the number of hotspots grown by merging 
some hotspot seeds. Other improvements to the framework 
involve incremental calculation of interestingness functions, 
and growing hotspots in parallel. The improved framework is 
evaluated in a case study for a very large 4-dimensional 
gridded air pollution dataset in which we find interestingness 
hotspots with respect to pollutants. 

Keywords—Interestingness Hotspot, Spatio-temporal Data 
Mining, Interestingness Function, Hotspot Discovery, Hotspot 
Growing Algorithm, Gridded Dataset  

I. INTRODUCTION 
We define interestingness hotspots as contiguous regions 

in space which are interesting based on a domain expert’s 
notion of interestingness which is captured in an 
interestingness function. Our research centers on finding 
interestingness hotspots on very large gridded datasets 
which are quite common in scientific computing: Many 
scientific disciplines such as optometry, earth and 
atmospheric sciences, medicine, and ecology produce large 
amounts of samples relying on spatial grid-structures that 
identify locations where measurements are taken. This leads 
to very large gridded datasets with a lot of variables and a 
large number of measurements recorded, posing challenging 
problems on how to store, query, summarize, visualize and 

mine such datasets. Coping with the mentioned challenges 
requires a scalable computational framework for processing 
large amounts of data.  

Typically, spatial or spatio-temporal clustering 
algorithms have been used to analyze such datasets; 
however, in our recent work [1], we proposed an alternative, 
non-clustering approach to obtain interestingness hotspots, 
which grows interestingness hotspots from seed hotspots, 
and then post-processes the obtained hotspots to remove 
highly-overlapping hotspots. 

In this paper, we improve the proposed hotspot 
discovery framework using the following approaches: 

1) A graph-based preprocessing algorithm is introduced 
that decrease the number of hotspots grown by 
merging some hotspot seeds. 

2) Another preprocessing algorithm is introduced that 
eliminates hotspot seeds which are included in an 
already grown hotspot. 

3) A heap-based hotspot growing algorithm is proposed 
that is much more efficient than the previously used 
hotspot growing algorithm.  

4) Incremental (online) calculation of various 
interestingness functions are provided to improve the 
runtime complexity of the hotspot growing algorithms.  

5) Parallel processing frameworks are used to speedup 
hotspot growing phase 

6) The improved interestingness hotspot discovery 
framework is evaluated in a case study involving a 
challenging, very large 4-dimensional gridded air 
pollution dataset. 
 

The rest of the paper is organized as follows. In Section 
2, we describe the hotspot discovery framework. Section 3 
provides a brief discussion of our methodology. We present 
the improvements on the existing framework in Section 4 
and experimental evaluation in Section 5. We review the 
related work in Section 6 and Section 7 gives a conclusion 
of the paper. 
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II. OVERVIEW OF INTERESTINGNESS HOTSPOT DISCOVERY 
FRAMEWORK  

In this section, we give a brief description of the 
framework for discovering hotspots in gridded datasets 
using interestingness functions. For a more detailed 
discussion of the framework, we refer to the original paper 
[1].  

A. Framework for Spatio-temporal Interestingness 
Scoping 
Interestingness hotspots are contiguous areas in space 

for which an interestingness function i assigns a reward 
w≥0, indicating “news-worthy” regional associations. Our 
goal is to mine spatio-temporal patterns for performance 
attributes in a predefined space.  The scope of an 
interestingness hotspot is a contiguous spatio-temporal 
region for which the association is valid; validity is assessed 
using interestingness functions. More formally, we assume a 
gridded dataset O is given in which objects o∈O are 
characterized by: a set of performance attributes P, a set of 
spatial attributes S,  a set of temporal attributes T, a set of 
continuous attributes M, which provide meta data under 
which the performance  attributes P are analyzed in the 
spatio-temporal space. Moreover, we assume a spatial 
neighboring relationship N is given 

 N⊆O×O 
that describes which objects belonging to O are neighbors.  
N is usually computed using spatio-temporal attributes S∪T 
of objects in O. Finally, we assume that we have an 
interestingness measure 

 i:2O→{0}∪ℜ+ 
that assesses the interestingness of subsets of the objects in 
O by assigning rewards to a particular cluster H. Moreover, 
we assume an interestingness threshold θ is given that 
defines which patterns are interesting. 

The goal of this research is to develop frameworks and 
algorithms that find interestingness hotspots H⊆O; where H 
is an interestingness hotspot with respect to i if the 
following 2 conditions are met: 

1. i(H) ≥θ  

2. H is contiguous with respect to N; that is, for each 
pair of objects (o,v) with o,v∈H, there has to be a path from 
o to v that traverses neighboring objects (w.r.t. N) belonging 
to H. In summary, interestingness hotspots H are contiguous 
regions in space that are interesting (i(H) ≥ θ). 

B. Example Interestingness Functions  
The most simplistic interestingness ip measure we can 

think of is one that directly uses the value of a single 
performance attribute p, which is defined as follows: 

 
where H⊆O is an interestingness hotspot, |H| denotes 
cardinality of H and h.p denotes the value for attribute p for 
cell h in H. 

Another interestingness function considers the 
correlation of two performance attributes p1 and p2; the 
corresponding interestingness function icorr(p1,p2) is defined as 
follows: 

 

where 0 < θ < 1 is the interestingness threshold,  and  
correl(H,p1,p2) is the correlation of attributes p1 and p2 with 
respect to the grid-cells belonging to hotspot H. This 
interestingness function is used to find regions in a dataset 
where the performance attributes p1 and p2 are correlated and 
therefore allows for the identification of regional correlation 
patterns in spatial datasets which is needed for commercial 
applications, such as geo-targeting.  

Finally, variance interestingness function considers the 
variance of a performance attribute p and we define the 
corresponding interestingness function ivar (p) as follows: 

 
where θ > 0 is the variance threshold,  and variance(H,p) is 
the variance of an attribute p with respect to the grid cells 
that form hotspot H. This interestingness function is used to 
find regions in a dataset where the performance attribute p 
does not change significantly. The obtained hotspots can be 
used to generate maps for the performance attribute and for 
generating prediction models for the performance 
attribute—similar to regression trees, 

C. Computing Interestingness Hotspots 
There are two different approaches for finding 

interestingness hotspots in gridded datasets. First approach 
is to use clustering techniques for mining gridded datasets. 
One clustering approach [5] works by dividing the dataset 
into smaller regions and then merges the pair of neighboring 
regions which yields the highest overall reward when 
merged. Merging continues until there are no merge 
candidates left and returns a set of disjoint regions which 
have the maximal sum of rewards. 

In this research we focus on a hotspot discovery 
framework, again, we divide the region into smaller regions, 
however, instead of merging regions, we firstly identify 
some small regions with high reward as seed regions and 
then grow these seed regions by adding neighboring objects 
which increase the reward most when added. Since we grow 
multiple seed regions, some of them may overlap after 
growing and we apply post processing to deal with 
overlapping hotspots. We focus on the latter approach which 
we believe has a much higher novelty value and more 
potential to compute “better”, more interesting hotspots, as 
the clustering approach searches for all hotspots in parallel, 
being forced to make compromises, as switching one sub 
region from one to another cluster might increase the reward 
of one cluster but decrease the reward of the other cluster. 
On the other hand, the main advantage of the clustering 
approach is that the obtained interesting hotspots are 
disjoint, whereas the hotspot discovery approach has to deal 
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with overlapping hotspots, which requires a post-processing 
step that is not necessary for the clustering approach. 

III. OVERVIEW OF HOTSPOT DISCOVERY ALGORITHM 
In this section, we briefly describe the interestingness 

hotspot discovery algorithm which works in 3 phases: 

1) Find small hotspots with high interestingness 

2) Grow the hotspots found in Phase 1 

3) Post-process hotspot regions found in Phase 2 by 
removing highly overlapping hotspots. 

A. Phase 1: Seeding Phase 
In this phase, we identify small regions with high 

interestingness in the dataset, which we call “hotspot seeds” 
and grow these seeds in Phase 2 to obtain larger hotspots. 
The whole dataset is firstly divided into small sub regions of 
same sizes and for each region an interestingness value is 
calculated using the plugin interestingness function. The 
framework allows user defined seed sizes. We refer to these 
smaller regions as “seed candidate regions”. A “seed 
interestingness threshold” is used to determine which seed 
candidate regions will be used to grow larger hotspots. Seed 
candidate regions having an interestingness value larger 
than the “seed interestingness threshold” are grown in 
hotspot growing phase. 

B. Hotspot Growing Phase 
We proposed a hotspot discovery algorithm in our 

previous work[1] which grows seed regions by adding a 
new cell in each step. This method grows hotspots by 
adding a neighboring grid cell in each step by finding the 
neighbor which will increase the reward function the most 
when added to the region. This neighbor is then added into 
the region and region’s neighbors list is updated with the 
neighbors of the newly added grid cell which are not already 
a neighbor or already in the region. We memorize the best 
hotspot obtained so far and its reward value, and update this 
information when a “hotter” hotspot has been found. We 
continue adding neighbors as long as the region’s 
interestingness remains positive. Our previous 
implementation used to stop growing of a hotspot if an 
improvement cannot be obtained in a predefined number of 
consecutive steps. We observed that once a hotspot’s reward 
start decreasing, it is quite possible that it start increasing 
again after a while and it is hard to predict this threshold. 
Thus, we updated the algorithm to grow the hotspot as long 
as the hotspot’s interestingness remains positive. 

Computational complexity of the hotspot growing phase 
is O(|H|) × O(RH) for each iteration of a hotspot where |H| is 
the cardinality of an hotspot and O(RH) is the runtime 
complexity of calculating the reward value. In each 
iteration, reward value with each neighbor is calculated and 
the number of neighbors is of order O(|H|).  As the number 
of objects increase in each iteration, a hotspot grows from h0 
initial elements to n elements, and if O(RH)  = O(H) the 
runtime complexity of growing a hotspot is:  

  
 If the interestingness function is calculated 
incrementally in O(1) time, then the complexity can be 
reduced to O(n2). 

Neighborhood definition is a plugin function in the 
framework. In our current implementation, we define two 
grid cells as neighbors if only one of the dimensions differ 
and the difference is 1. Following is the neighborhood 
definition for a 4D dataset with x, y, z, and t dimensions:  

 (5) 
where o1 and o2 are two grid cells and oi..x corresponds to x 
dimension value of oi. Depending on the application 
domain, various neighborhood definitions can be defined. 

C. Phase 3: Post-processing algorithms to remove 
overlapping hotspots 
Hotspot growing phase usually creates large number of 

hotspots with high degree of overlaps. In this phase, we try 
to remove specific overlapping hotspots in order to 
eliminate redundant hotspots. To do this, we set an overlap 
threshold and find an optimal set of hotspots that overlap 
less than the threshold value while maximizing the total 
reward. More formally, the post processing problem can be 
defined as follows: Given  a set of hotspots S, and an 
overlap threshold λ, find a subset S’⊆S for which ∑H∈S i(H) 
is maximal, subject to the following constraint: 
∀H∈S’∀H’∈S’ λ≥overlap(H,H’) where degree of overlap 
is measured by: 

(6) 
The degree of overlap of two hotspots is the ratio of the 
number of grid cells that are shared between both hotspots 
to the number of grid cells in the smaller hotspot. For 
example, if one hotspot has 100 grid cells, and another one 
has 80 grid cells and they share 60 grid cells, then the 
degree of overlap is 60/80 = 0.75. In definition (6), the 
number of grid cells in the smaller hotspot is used in the 
denominator to make sure that hotspots which are 
completely contained in another hotspot can be eliminated. 
Alternatively, the total number of grid cells in both hotspots 
could be the denominator, however, if hotspot A with 1000 
grid cells completely contains all grid cells in the hotspot B 
which has 100 grid cells, then the overlap ratio would be 
100/1100 = 0.09, which implies a very low degree of 
overlap. We overcame this problem by using definition (6). 

The proposed preliminary post-processing algorithm in 
[1] used to iterate over pairs of hotspots that are overlapping 
to a degree more than λ and remove the hotspot with the 
lower interestingness. The algorithm was not finding the 
optimal set of non-overlapping hotspots with the largest 
total reward value. We replaced this algorithm with a graph-
based algorithm that finds the optimal set of non-
overlapping hotspots, however it is a subject of another 
paper which is not published yet.  
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IV. IMPROVEMENTS 
In this section, we present the improvements for each 

phase of the hotspot discovery framework. 

A. Seeding Phase 
The seeding phase divides the region into smaller 

regions of same size and finds the ones with the higher 
interestingness which are grown in phase 2. However, we 
observed that many of these smaller regions grow to the 
same (or quite similar) regions. This is not surprising as a 
large hotspot with high interestingness will usually have 
smaller sub-regions with very high interestingness. A Case 
study reported in [1] justifies that the hotspots created by 
seed regions that grow to the same region are either same or 
very close to each other in shape and size. Obviously, it is 
better to eliminate some of these seed regions before 
growing them. We propose the following technique to 
reduce the number of seed regions grown: 

1) Find neighboring seed regions 

2) Create a neighborhood graph of seed regions where each 
seed region is a node. Create an edge between nodes if the 
corresponding regions are neighbors and if the union of 
these regions yields a region with an acceptable reward 
value. A merge threshold is used to assess if the union of 
these regions is acceptable.  

3) Merge the seed regions connected by an edge starting 
with the pair that yields the highest reward gain when 
merged.  

4) Update neighborhood graph after the merge operation. 
Create an edge between the new node and neighbors of the 
merged nodes using the same procedure. 

5) Continue merging seed regions as long as there are 
nodes to be merged (i.e. edges) in the graph.  

This algorithm is similar to MOSAIC [5] clustering 
algorithm, however is implemented using more efficient 
data structures, and creates the neighborhood graph using a 
undirected graph with weighted edges instead of a Gabriel 
Graph. We use an additional HashSet data structure to keep 
a list of nodes instead of an Array to ensure minimum 
add/remove and containment check time complexity as a 
HashSet data structure has O(1) time complexity for all of 
these operations. Moreover, we use a Heap data structure 
[17] to keep the list of edges. A heap is a special tree 
structure that satisfies the heap property: All nodes are 
either ‘greater than or equal to’ or ‘less than or equal to’ 
each of its children, according to a comparison predicate. 
Heaps are mostly used for priority queues and in this 
problem we need to prioritize the edges that will be 
processed. The edge connecting the pair of nodes which 
results the highest reward gain when merged is the root of 
the heap. Heap data structure has O(logn) time complexity 
for extract-max operation, so less time is spent for finding 
the next merge candidate; and O(logn) time complexity for 
add operation as we add new edges for the new region after 
a merge operation. MOSAIC uses an array structure for 
keeping the clusters and merge candidates which require 

O(n) time for all of these operations. Furthermore, we 
require that the merge operation yields a region with an 
acceptable reward. That is, we do not want to create 
hotspots with low rewards as a result of merging two seed 
regions. This is also consistent with the objective of the 
post-processing algorithm—to get the set of hotspots with 
the highest total reward. We use a merge threshold µ to 
define if the union of seed regions is acceptable. If the 
reward of the new region is higher than the total reward of 
merged regions multiplied by µ, then the merge is 
acceptable: 

 merge(s1, s2) if  R(∪(s1,s2)) >  (R(s1) + R(s2)) * µ (7) 
where R(si) represents the reward of seed region si. Fig. 1 
depicts pseudocode for the seed preprocessing algorithm 
and Fig. 2 depicts the merge procedure which merges seed 
regions connected by an edge. We assign the reward gain 
which is calculated by R(∪(si,sj))  -  (R(si) + R(sj)) as the weight 
of an edge (line 10 in Fig. 1). The edge with the highest 
reward gain is the root of the heap tree and processed first. 
  
1:  Create an undirected graph G and HashSet S of seed regions 
2:  foreach seed region si  
3:      Add si to G as a vertex 
4:      Add si to S 
5:  end foreach 
6:  for i = 0 to number of seed regions – 1  
7:     for j = i + 1 to number of seed regions 
8:          if si and sj are neighbors and R(∪(si,sj)) >  (R(si) + R(sj)) * µ then 
9:                  Create an edge e connecting nodes si and sj 
10:                e.weight = R(∪(si,sj))  -  (R(si) + R(sj)) 
11:                G.AddEdge(e) 
12:        end if 
13:   end for 
14: end for 
 
15: Create a max-Heap H of edges  
16: foreach edge e in G.edges  
17:      H.enqueue(e, e.weight) 
18:  end foreach 
 
19:  while H has elements   
20:      nextEdge = H.dequeue()   
21:      if S contains both nodes connected by nextEdge then 
22:           Merge(nextEdge) 
23:     end if 
24:  end while

Fig. 1. Pseudo-code for preprocessing algorithm 

While processing edges in the order of descending 
weights, it is possible that an edge which is still in the heap 
might have been removed from the graph by merge 
procedure as a result of merging one of the connected nodes 
in a previous step. That edge might still be in the heap as the 
heap data structure does not support deleting a particular 
node. In that case, the dequeue operation will return an edge 
that does not actually exist in the graph. So, we check if 
both nodes connected by the edge exist in the set of seed 
regions to make sure that both nodes survive (line 21 in Fig. 
1); otherwise we just skip processing that edge. 
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1: Procedure Merge (Edge e) 
2:   Set s1 = e.source, s2 = e.target 
3:   Merge s1 and s2 by adding all elements in s1 and s2 in a new region snew 

4:   Add snew into G as a new vertex 
5:   Remove e from G 
6:   foreach neighbor si of s1 connected by edge ei 

7:       if R(∪(si,snew)) >  (R(si) + R(snew)) * µ then 
8:            Create an edge enew connecting nodes si and snew 
9:            enew.weight = R(∪(si,snew))  -  (R(si) + R(snew)) 
10:           G.AddEdge(enew) 
11:           G.RemoveEdge(ei) 
12:     end if 
13:  end foreach 
14:  foreach neighbor sj of s2 connected by edge ej  

15:      if R(∪(sj,snew)) >  (R(sj) + R(snew)) * µ then 
16:          Create an edge enew connecting nodes sj and snew 
17:          enew.weight = R(∪(sj,snew))  -  (R(sj) + R(snew)) 
18:          G.AddEdge(enew)  
19:          G.RemoveEdge(ej) 

20:     end if 
21:  end foreach 
22:  Remove s1 and s2 from the graph G and HashSet S 
23:  Add snew into HashSet S 
24: end procedure 
Fig. 2. Pseudo-code for Merge operation 

B. Hotspot Growing Phase 
In this phase, we present four different optimization 

techniques and a new hotspot growing algorithm. 

1) Eliminate contained seed regions  
As many seed regions grow to the same hotspot, it is 

possible to anticipate if an un-grown seed region will grow 
to a hotspot which was already discovered by growing 
another seed region. Before growing a seed region, we 
check if it is already contained in an already grown seed 
region and if so, we do not grow it. In most cases, this 
optimization work pretty well and eliminates seed regions 
which would grow to an already discovered hotspot. 
However, it is still possible that a seed region eliminated by 
this method could possibly create a hotspot with a higher 
interestingness if it were grown. In order to minimize this 
possibility, we sort seed regions in the decreasing order of 
initial interestingness and grow them in this order. 
Obviously, a seed region with a higher interestingness value 
has a higher chance of growing a hotspot with higher 
interestingness. 

However, it is not trivial to decide if a seed region is 
contained by a hotspot. In most cases, some grid cells in the 
seed region are not included in a hotspot which covers the 
seed region. Thus, we use a containment threshold to decide 
if the seed region will be grown or not. If the containment 
threshold is set to 0.9, then 90% of the grid cells in the seed 
region needs to be included in a hotspot to eliminate this 
seed region. We use thresholds higher than 0.9 in our 
framework implementation. This threshold can be set to 
different values depending on the application domain. We 
use the algorithm in Fig. 3 to calculate if a hotspot contains 
a seed region. 

 

 

1: Procedure checkContainment(hotspot, seed) 
2:      set maxExcludedAllowed = seed size * (1- ContainmentThreshold) 
3:      set numNotIncluded = 0 
4:      foreach grid cell in seed 
5:          if  hotspot does not contain cell then 
6:                 numNotIncluded = numNotIncluded + 1 
7:                 if numNotIncluded >= maxExcludedAllowed then 
8:                        return false 
9:                end if 
10:        end if 
11:    end foreach 
12:    return true 
13:end procedure

Fig. 3. Pseudocode for containment check algorithm  

Since we use a HashSet to keep list of grid cells in a 
hotspot, calculating the number of grid cells in the seed 
region which are included in a hotspot only takes O(|s|) time 
where |s| is the size of the seed region. We further optimize 
this procedure and use the algorithm in Fig. 3 which 
prematurely stops calculating (in line 8) when a minimum 
number of cells not included in the hotspots is reached. For 
two completely separated regions, if the containment 
threshold is set to 0.9, this procedure returns the result in 
|s|/10 iterations. 

2) Heap-based hotspot growing algorithm 
In this subsection, we introduce a novel heap-based 

hotspot growing algorithm. In hotspot growing phase, we 
search the best neighbor among all neighbors in each step, 
and after each time we add a new neighbor we do this 
search again. Searching the most fit neighbor each time 
takes the complexity of hotspot growing algorithm to O(n2) 
at least where n is the number of grid cells in the hotspot, 
assuming reward function is calculated incrementally. 
However, we observed that the ordering of the neighbors 
according to their ‘fitness’ for the region does not change 
much as the region grows. If a neighbor n1 increases the 
reward more than the neighbor n2 when evaluated in step si, 
this usually means that n1 is still a better fit to be included in 
the region for another step sj. There are some cases in which 
this does not hold; if the attributes of n1 and n2 are very 
close, as the region grows n2 may become a better fit for the 
region. However, such cases occur very rarely and do not 
affect the final hotspot dramatically as both neighbors are 
generally either included in or excluded from the hotspot. 
Thus, it is redundant to evaluate each neighbor in each step 
of the growing phase. Instead, we use a max-heap data 
structure to keep the list of neighbors where the neighbor 
with the highest fitness value is the root of the heap tree. 
Using a max-heap, instead of searching for the best 
neighbor in each step, we simply add the root node into the 
region. When new neighbors are encountered as a result of 
growing the hotspot, we assign each new neighbor a fitness 
value by evaluating the reward gain in case the neighbor is 
added to the region and add it into the heap using the reward 
gain as the priority. Next, we continue growing the region as 
long as there are more neighbors and the interestingness of 
the region is higher than the interestingness threshold.  

Heap data structure has O(logn) time complexity for 
extracting the root node (extract-max operation), insertion 
and deletion operations. Some specialized heap 
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implementations (Binomial heaps and Fibonacci heaps [17]) 
allow amortized O(1) time complexity for insertion. Figure 
4 gives the pseudocode of heap based hotspot growing 
algorithm. This procedure is called in a loop as long as the 
interestingness of the region remains positive and there are 
more neighbors in the heap. The best reward found is 
memorized (lines 11-14) and when hotspot growing is 
finished, the hotspot is set back to this state. The runtime 
complexity of the heap-based hotspot growing algorithm is 
O(nlogn) as a total of O(logn) time is spent in each step 
where n is the number of objects in the hotspot—O(logn) 
time is spent for finding the best neighbor and removing it 
from neighbors list, plus O(1) for adding it to the region and 
O(logn) for adding neighbors of newly added object to the 
neighbors list. Before adding the neighbors of the newly 
added object to the heap—there are at most 8 neighbors 
according to the neighborhood definition (5)—we need to 
ensure that the neighbor is not contained in the region or in 
the neighbors list. To optimize this containment check time 
complexity, we keep the objects in the region in a HashSet. 
Furthermore, in the implementation of max-heap data 
structure, we put all elements in the heap into an additional 
HashSet data structure and manage them together to 
minimize containment check operation time complexity.  
1:  Procedure AddNextNeighbor(region)        
2:        set bestNeighbor = Heap.dequeue() 
3:        add bestNeighbor to region 
4:        set newReward = CalculateReward(region) 
5:        foreach neighbor n of bestNeighbor 
6:               if n is not in region and n is not in the neighbors list then 
7:                    set fitness = CalculateFitness(region, n) 
8:                    Heap.enqueue(n,fitness) 
9:               end if 
10:      end foreach 
11:      if newReward > region.alltimeBestReward then 
13:            set region.alltimeBestReward = newReward 
12:            set region’s alltimeBestGridCells = region.currentGridCells  
14:      end if 
15: end procedure 

Fig. 4. Pseudocode for heap-based hotspot growing algorithm 

This optimization requires choosing a good fitness 
measure for each neighbor of the growing hotspot. New 
neighbors are evaluated with a different state of the growing 
hotspot. Thus, it is very important to put the new neighbors 
in a correct order in the list of neighbors ordered by 
decreasing fitness values. A sample fitness function is given 
in the experimental evaluation section. 

3) Incremental calculation of interestingness functions 
As mentioned in Section 3, calculating the 

interestingness function incrementally dramatically 
decreases the runtime complexity of hotspot growing phase. 
In this subsection, we show how to calculate interestingness 
functions incrementally. Incremental calculation means that 
as new data comes, a function’s output when applied on a 
dataset is calculated without going over the previous data. 
For example, count or sum of elements in a dataset can be 
calculated incrementally by just increasing the value of a 
variable, instead of counting or adding all numbers again. It 
should be noted that some functions cannot be calculated 
incrementally. Aggregate functions are categorized as 

distributive, algebraic or holistic [18]. Distributive functions 
can be computed in a distributive manner by partitioning the 
data into subsets, and aggregating the result of applying the 
function to each subset. Sum, count, min, max are some 
example distributed functions. Algebraic functions can be 
computed by applying an algebraic function on a constant 
number of distributive functions. For example, average 
function is an algebraic function as it can be computed by 
sum/count. Holistic functions cannot be computed by 
applying an algebraic function on a constant number of 
distributive functions, thus all data needs to be processed 
together. As a result, unlike distributive and algebraic 
functions, holistic functions cannot be calculated 
incrementally. Median and rank are examples to holistic 
functions. In this section we describe a methodology for 
implementing a given algebraic or distributive function 
incrementally, using variance function as an example.  

Given an empty set of objects R, we are supposed to 
calculate the variance of attribute a incrementally while 
adding new objects into R where each object has an attribute 
a. It is shown in the literature [19, 20] that variance can be 
calculated incrementally by updating the mean and sum of 
squared differences (M2) with each new value x using the 
following equations: 

meann = meann-1 + (x – meann-1) / n , and 

M2 = M2 + (x – meann-1) × (x – meann) 

Then the variance can be calculated in O(1) time by: 

variance(R, a) = M2 / (n-1) 

where n is the number of objects in the dataset. We use the 
same equation in our code to calculate variance in O(1) time 
when a new grid cell is added to a region. From a software 
design perspective, we create a new class named 
“StatsCalculator” which keeps a reference to n, mean and 
M2. Each region has its own copy of StatsCalculator object. 
Each time we add a new object to a region, we call the 
procedure “Add(x)” in StatsCalculator class, which updates 
these values using x. When we need to retrieve the variance 
value for the region, we call “variance()” procedure which 
just returns M2/ (n-1).  

Calculating correlation function incrementally is similar but 
more complicated. We will not present the details as space 
is limited and refer to literature [20]. 

4) Parallel processing of hotspot growing phase 
Hotspot growing phase can be easily processed in 

parallel by assigning a seed region to be grown for each 
processor. In our implementation we use a shared memory 
parallel programming approach. The framework was 
implemented using .NET Framework, and we use TPL (task 
parallel library) which is Microsoft’s shared memory 
parallel programming implementation for the .NET 
framework. A parallel for loop is used in our 
implementation which assigns seed regions to multiple 
threads as threads become available. The framework itself 
optimizes the number of threads created to complete the 
loop as fast as possible while trying to optimize system 
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resources and assigns tasks to threads when threads become 
available. 

V. EXPERIMENTAL EVALUATION 
In this section, we present experiments in which we 

evaluate the effectiveness of the algorithms we propose in 
this paper. We evaluated our framework on a very large 4-
dimensional gridded air pollution dataset. We find high 
correlation hotspots and low variance hotspots with respect 
to pollutants in the dataset. The air pollution dataset [6] 
provided by EPA (Environmental Protection Agency) 
contains 132 air pollutant observations divided to 4km by 
4km square grids on latitude and longitude dimensions, and 
27 layers of various heights on altitude dimension. The total 
area is covered by 84 grid cells on latitude dimension which 
correspond to the columns of the grid, and 66 grid cells on 
longitude dimensions which correspond to the rows of the 
grid. The concentrations of air pollutants and meteorological 
variables are recorded in each hour for each grid cell. 
Storing all observations for a day in raw binary format takes 
1.8 GB memory space. For the case study, we use a subset 
of grid cells covering the city of Houston which includes 26 
columns, 19 rows and 27 layers (13338 grid cells). One day 
of air pollution data covering the city of Houston includes 
320112 observations for each of 132 air pollutants in the 
dataset.  

In the next subsections, we will measure the 
improvements obtained by each optimization. We ran all 
test on a Windows computer with 4 processors. 

A. Merging Seed Regions 
We run hotspot discovery algorithms on air pollution 

data to find low variation hotspots with different parameter 
settings. We run test on different timeframes and merge 
thresholds and measured the number of seed regions found, 
number of seed regions grown and the total reward and 
average variance of hotspots obtained after eliminating 
overlapping hotspots. Table 1 lists the parameters applied, 
and Table 2 lists the results for each test. We use the 
variance interestingness function defined in (3) and set the 
interestingness threshold to 0.65 and following reward 
function is used for evaluating the quality of a region R: 

 ϕ(R) = interestingness(R) × size(R)β  (8) 
where β>1 is a parameter determining the degree preference 
for larger regions. We set β to 1.01 as we prefer smaller 
hotspots with high interestingness to larger hotspots with 
low interestingness.  We set seed size to 3x3x3x1 for Test 1 
and Test 2 and to 3x3x3x3 for Test 3 as Test 3 dataset is 4-
dimensional. Seed threshold was set to 0.65 for the Test 1 ad 
Test 2 and 0.5 for Test 3. 

 

TABLE I.  TEST PARAMETERS 

Test# Dataset Date Timeframe Merge Threshold 
1 2013-09-01 12am (1hr) 0.96 
2 2013-09-01 12am (1hr) 0.60 
3 2013-09-01 6am-6pm (12hr) 0.96 

TABLE II.   TEST RESULTS 

 Test 1 Test 2 Test 3 
Seeds Found 27 27 233 
Seeds Grown 23 17 79 
Hotspots Found 8 7 9 
Hotspots found  
without merging 8 8 9 

Average hotspot 
variance 0.275 0.290 0.219 

Average hotspot 
variance without 
merging 

0.269 0.269 0.207 

Total reward 1203 1163 63049 
Total reward  
without merging 1206 1206 63544 

 

Merging seed regions affect the number of seed regions 
grown. It is expected that the reward of hotspots may not be 
as high when some seed regions are merged as the merge 
operation causes some grid cells to be included in the 
merged region which would not be included otherwise. The 
test results show that the loss of total reward and the 
variance increase are not significant. As shown in Test 2 
results, decreasing the merge threshold obviously causes 
more loss in the total reward (loss is 43 compared to 3 in 
Test 1) as less compatible regions are merged. The runtime 
of the seed preprocessing phase in all tests were much lower 
than a second, taking at most 0.2 seconds in Test 3 in which 
the number of seed regions reduced from 233 to 79 after 154 
successive merge operations were applied. Figure 5 shows 
some of the seed regions which were computed by 
preprocessing seed regions. As shown in the figure, there 
are many large regions which are composed of smaller seed 
regions.  

Fig. 5.  Merged seed regions. 
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Fig. 6. Neighborhood graph of a set of seed regions 

Figure 6 shows a part of the neighborhood graph for a 
set of seed regions that were merged by the preprocessing 
algorithm. A grid structure is clearly visible in the 
neighborhood graph. Vertices show each seed regions’ 
index and reward in parenthesis. Edge weights (edge 
weight=reward gain, not gain ratio) are given next to each 
edge. There is an edge between two vertices if their merge is 
acceptable (i.e. gain ratio is larger than merge threshold). 

The results show that preprocessing algorithm succeeds 
in decreasing the number of seed regions dramatically 
without affecting the final set of hotspots discovered when a 
large merge threshold is used. 

B. Eliminate contained seed regions  
In this subsection, we will assess the effectiveness of 

eliminating seed regions that are contained by an already 
grown hotspot. We ran Test 1 described in the previous 
section without running the seed preprocessing algorithm, 
only to see the effects of this optimization by itself. When 
we set the containment threshold to 0.9, number of seed 
regions grown decreased from 27 to 17 as 10 hotspots were 
eliminated by this optimization. After the post-processing 
phase, only 8 hotspots survived and the total reward of those 
hotspots was 1205, which would be 1206 if no optimization 
would be done.  

Next, we ran the same test by firstly preprocessing seed 
regions and then eliminating contained seeds; the first step 
decreased the number of seed regions to 23 as in Section 5.1 
and out of these 23 regions another 6 of them were 
eliminated by this optimization as some seed regions were 
included in the grown hotspots. The total reward was still 
1203 as in Section 5.1. This optimization is definitely very 
effective in eliminating redundant seed regions. 

All of the optimizations in our framework are optional, 
so they can be used together or one can be chosen over 

another one. In this case, the end result did not change 
dramatically. Both algorithms succeeded in choosing the 
right set of seed regions to be eliminated.   

C. Heap-based hotspot growing algorithm 
In this subsection, we evaluate the heap-based hotspot 

growing algorithm and compare it with the previously 
proposed hotspot growing algorithm. We chose three 
sample hotspots from test cases in Section 5.1, ran the 
legacy hotspot growing algorithm and the new heap-based 
algorithm while calculating the reward function 
incrementally. We used the following fitness function for a 
neighbor ni of hotspot H: 

 fitness (ni) = (R(H ∪ ni) – R(H) ) / |H|  (9) 
where R(H∪ni) represents the new reward when ni is added 
to the hotspot and |H| is the hotspot size. This fitness 
function is used with variance interestingness function 
defined in (3) and reward function defined in (8). When 
there are more objects in the hotspot, adding a neighbor 
effects the reward much less compared to a neighbor that is 
added when the hotspot was smaller. This is due to the 
nature of variance function which measures the average of 
the squared differences from the mean, and calculated by 
dividing the squared differences to the number of elements; 
thus dividing the reward gain to hotspot size is required to 
fairly compare the neighbors. Table 3 lists the test results. 

TABLE III.  TEST RESULTS OF COMPARING HEAP-BASED GROWING 
ALGORITHM AND TRADITIONAL GROWING ALGORITHM 

Hotspot # 1 2 3 
Final hotspot 
size (heap-
based) 

15242 cells 790 cells 3121 

Final hotspot 
size (legacy) 15641 cells 832 cells 3165 

Runtime 
(heap-based) 5.9 seconds 23 ms 0.243 sec 

Runtime 
(legacy) 170 seconds 525 ms 8.8 sec 

 

Table 3 shows that the efficiency of heap-based hotspot 
growing algorithm is significantly higher than the traditional 
algorithm. This is expected as heap-based hotspot growing 
algorithm has O(nlogn) complexity compared to O(n2) 
complexity of the legacy hotspot growing algorithm. 
Moreover, the number of cells in the grown hotspots are 
almost same for both algorithms which shows that the 
employed fitness measure did work well.  

D. Incremental (online) calculation of interestingness 
functions 
In this section we evaluate the performance gain by 

calculating the variance interestingness incrementally. First 
2 columns in Table 4 was reported in our previous work in 
runtime analysis section. The growing time with the 
incremental calculation using legacy and new hotspot 
growing algorithms are added in the 3rd and 4th columns. 
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TABLE IV.  HOTSPOT GROWING PHASE EXECUTION TIMES FOR 
THE 3D DATASET USING CORRELATION INTERESTINGNESS FUNCTION 

hotspot size 
(grid cells) 

Growing  time –
non-incremental 

(sec) 

Growing time –
incremental 

(sec) 

Using 
heap 

450 2 0.69 0.001 

1251 25 1.47 0.058 

2082 111 3.34 0.098 

3933 705 7.1 0.3 

 

Growing times of the hotspot growing algorithm using 
the incremental reward calculation algorithm is dramatically 
faster than the non-incremental reward calculation as the 
runtime complexity decreases from O(n3) to O(n2). 
Moreover, using the heap-based growing algorithm along 
with incremental calculation makes the growing time orders 
of magnitude faster (0.3 seconds compared to 705 seconds 
for 3933 grid cells). 

E. Parallel Processing of Hotspot Growing Phase 
In this subsection we present the runtime improvements 

obtained by growing hotspots in parallel. We grew all 79 
seed regions that were found in Test 3 in Section 5.1 using 
sequential and parallel processing and recorded the  growing 
times for each hotspot and total growing time for all 
hotspots. We ran the test 5 times and took the average of 
runtimes. We used a computer with 4 processors and as 
shown in Table 5, parallel processing speedup is 977/354 = 
2.75 and parallel efficiency is 2.75/4 = 0.6875. Although the 
total running time improves using parallel processing, it 
takes about 15 times slower to grow a hotspot as too many 
threads are running at the same time sharing system 
resources.  

TABLE V.  PARALLEL AND SEQUENTIAL GROWING TIMES 

 Sequential Parallel 
Average growing 
time of a hotspot 

12.2 sec. 184 sec. 

Total growing time 
of all hotspots 

977 sec. 354 sec.  

 

VI. RELATED WORK 
Kulldorff [13] introduced basic spatial scan statistics to 

search spatiotemporal circular regions occurring within a 
certain time interval which obtains cylinder-shaped hotspots 
by growing cylinders from a point of origin by increasing 
the radius and height of the cylinder. Iyengar [9] extended 
basic spatial scan statistics by using flexible square pyramid 
shapes instead of cylinders for spatiotemporal clusters that 
can grow, shrink or move over time.  

There are many clustering algorithms capable of 
computing spatio-temporal hotspots. However, in a 
clustering approach all hotspots are obtained in a single run 
of the clustering and the obtained clusters are always 
disjoint in contrast to hotspot growing approaches. Many of 
these algorithms extend DBSCAN [8] for performing 

spatiotemporal clustering. Wang et al. [15] proposed two 
spatiotemporal clustering algorithms called ST-DBSCAN 
and ST-GRID. ST-DBSCAN introduces the second 
parameter of temporal neighborhood radius in addition to 
the spatial neighborhood radius in DBSCAN. ST-GRID is a 
grid-based clustering approach, which operates on the 
spatiotemporal observations in a 4D-gridstructure. Birant [2] 
et al. also improved DBSCAN for spatiotemporal clustering 
and applied it to discover spatiotemporal distributions of 
physical seawater characteristics in Turkish seas. A density 
factor is assigned to each cluster for detecting some noise 
points when clusters of different densities exist. The density 
factor of a cluster captures the degree of the density within a 
particular cluster. Joshi [11] et al. proposed a spatiotemporal 
polygonal clustering algorithm, called STPC, which extends 
the DBSCAN algorithm to cluster spatiotemporal polygons 
by redefining the neighborhood of a polygon as the union of 
its spatial and temporal neighborhoods. When calculating 
spatial neighbors for a polygon, the temporal aspect was 
reduced to a fixed interval or time instance and was 
therefore constant. Moreover, the spatial dimension was 
instead held to a constant space when calculating temporal 
neighbors of a polygon.  

Another popular clustering algorithm SNN [7] (Shared 
Nearest Neighbor) has also been extended for spatio-
temporal clustering by researchers. Oliveira et al. [14]  
proposed an algorithm called 4D+SNN which allows the 
integration of space, time and semantic attributes into the 
clustering process. This algorithm is able to deal with 
different data sets and different discovery purposes as the 
user has the ability to weight the importance of each 
dimension in the discovery process. Furthermore, two other 
spatiotemporal clustering algorithms, called Spatiotemporal 
Shared Nearest Neighbor clustering algorithm (ST-SNN) 
and Spatiotemporal Separated Shared Nearest Neighbor 
clustering algorithm (ST-SEP-SNN) [16], were proposed to 
cluster overlapping polygons that can change their locations, 
sizes and shapes over time. Both ST-SNN and ST-SEP-
SNN are also generalizations of the SSN clustering 
algorithm. 

All spatio-temporal clustering algorithms that were 
discussed so far compute clusters based on only the distance 
information. A new group of clustering algorithms has been 
introduced in the literature which find contiguous clusters 
by maximizing plug-in interestingness functions similar to 
the approach used in this paper. These algorithms are 
capable of considering non-spatial attributes in objective 
functions that drive the clustering process. They maximize 
the sum of the rewards for each cluster based on a cluster 
interestingness function to compute clusters. CLEVER [3,4] 
is a k-medoids-style [12] clustering algorithm which 
exchanges cluster representatives as long as the overall 
reward grows, whereas MOSAIC[5] is an agglomerative 
clustering algorithm which starts with a large number of 
small clusters, and then merges neighboring clusters as long 
as merging increases the overall interestingness. We used an 
algorithm similar to MOSAIC for pre-processing the seed 
regions. 
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VII. CONCLUSION 
In this paper, we optimized our computational 

framework for mining very large gridded spatio-temporal 
datasets. Our framework grows hotspots from seed regions 
using plugin interestingness and reward functions. Our 
approach is quite different from traditional hotspot 
discovery algorithms. To the best of our knowledge, this is 
the only hotspot discovery algorithm in the literature that 
grows seed regions using a reward function. We claim that 
the proposed framework is capable of identifying a much 
broader class of hotspots, which cannot be identified by 
traditional distance-based clustering algorithms. We plan to 
compare our framework with other approaches in a future 
work. 

In this paper, we presented very efficient preprocessing 
algorithms to eliminate redundant seed regions. The 
experimental evaluation section revealed that the 
preprocessing algorithms succeeded in eliminating 
redundant seed regions without affecting the quality of the 
discovered hotspots. Moreover, we presented a new heap-
based hotspot growing algorithm which improved the 
runtime efficiency of the hotspot growing phase 
significantly. Parallel processing of hotspot growing phase 
along with incremental calculation of interestingness 
functions dramatically reduced the total time required to 
discover hotspots. The experimental evaluations show that 
the total speedup is in the orders of magnitude.  

On the other hand, our framework is extensible. The 
proposed algorithms are general and can be applied to 
various kinds of data such as point sets and polygons. We 
will work on adapting our framework to work with different 
types of spatial data rather than just gridded datasets. 
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