
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1924

Light-Weight Parallel Python Tools
for Earth System Modeling Workflows

Kevin Paul∗, Sheri Mickelson†, John M. Dennis‡, Haiying Xu§, and David Brown¶

National Center for Atmospheric Research
1850 Table Mesa Drive

Boulder, Colorado 80305
Email: ∗kpaul@ucar.edu, †mickelso@ucar.edu, ‡dennis@ucar.edu, §haiyingx@ucar.edu, ¶dbrown@ucar.edu

Abstract—In the last 30 years, earth system modeling has be-
come increasingly data-intensive. The Community Earth System
Model (CESM) response to the next Intergovernmental Panel on
Climate Change (IPCC) assessment report (AR6) may require
close to 1 Billion CPU hours of computation and generate up to
12 PB of raw data for post-processing. Existing post-processing
tools are serial-only and impossibly slow with this much data.
To improve the post-processing performance, our team has
adopted a strategy of targeted replacement of the “bottleneck
software” with light-weight parallel Python alternatives. This
allows maximum impact with the least disruption to the CESM
community and the shortest delivery time. We developed two
light-weight parallel Python tools: one to convert model output
from time-slice to time-series format, and one to perform fast
time-averaging of time-series data. We present the motivation,
approach, and results of these two tools, and our plans for future
research and development.

Keywords-Scientific computing; Data processing; High perfor-
mance computing; Parallel processing

I. INTRODUCTION

Climate modeling is a massively data-intensive area of
research. Substantial improvements to computing power have
resulted in climate modeling codes that are capable of spatial
and temporal resolutions that were only figments of scientists’
imaginations 30 years ago. With this dramatic increase in
resolution, the size of the raw computational output has
increased proportionally. The enormous increase in comput-
ing power—evidenced by the increase in single-processor
computing speeds, system memory, and parallel computing
platforms—has seriously outpaced I/O performance. As a
result, these raw data files have become so large in the
last decade that previously effective serial post-processing
analysis and diagnostics software have become crippled under
the massive amount of raw data. In this paper, we focus
our attention on just one of these climate modeling codes,
the data-intensive problems it is currently facing, and the
targeted parallel Python-based solutions that we are proposing
to address this code’s problems.

The Coupled Model Intercomparison Project Phase 5
(CMIP5) [1] assembled and compared data produced by 20
climate modeling groups from around the world in prepa-
ration for the Intergovernmental Panel on Climate Change
(IPCC) [2] Assessment Report 5 (AR5) [3]. One of the models
participating in the CMIP5 project was the Community Earth

System Model (CESM) [4], with development centered at
the National Center for Atmospheric Research (NCAR) [5].
CESM is a fully-coupled model comprised of a coupler code
and four component codes: the Community Atmosphere Model
(CAM) [6], the Community Land Model (CLM) [7], the
Parallel Ocean Program (POP) [8], and the Community Ice
CodE (CICE) [9]. CESM produced close to 2.5 PB of raw data,
of which 170 TB were submitted to the Earth System Grid
(ESG) [10] as part of the CMIP5 project. For CMIP6 [11],
estimates of 12 PB of raw data output are expected from
CESM’s contribution.

The 2.5 PB of CESM data generated for the CMIP5 project
was produced in NetCDF-formatted [12] time-slice files. A
single time-slice file contains all of the data generated by
one of CESM’s component codes for a “slice” (i.e., a short
duration) of time, nominally a single (or small number) of
simulation time steps. Historically, these files have been the
de facto standard output format for all of CESM’s component
codes. However, as both spatial and temporal resolution have
increased, and as model improvements result in more time-
dependent variables being written to output (currently between
30 and 300, depending upon the component and simulation
case), the size of these time-slice files have grown and become
unwieldy for scientists to analyze after the data has been
generated and stored to disk (i.e., post-processing).

During most post-processing analyses, scientists need to
extract only a few variables spanning a relatively long duration
of time (i.e., many time-slices). To accomplish this with
archived time-slice files, scientists must download all of the
time-slice files that contain the necessary variables and that
span the required duration of time. This data can be massive
in size, depending upon the duration of time spanned by the
analysis and the number and size of variables in each time-
slice file. Alternatively, one can subset the data on the server
side and extract only the necessary data needed for analysis.
The Research Data Archive (RDA) [13] at the National Center
for Atmospheric Research’s (NCAR) is one such service
for efficient online subsetting. Unfortunately, this subsetting
service is not sufficient for frequent day-to-day use.

To solve this problem, CESM developers and scientists have
recently switched from storing time-slice files to storing time-
series files. This time-series format is required for submission
of the CMIP data to the Earth System Grid (ESG). Each time-

1925

TABLE I
DATASETS USED FOR TIME-SLICE TO TIME-SERIES TRANSFORMATION TESTING

Component Component Code Name Resolution TS Size (GB) MD Size (MB) TS Variables

Atmosphere CAM-FV 1 deg 28 < 1 122

CAM-SE 1 deg 30 1 132

0.25 deg 1050 18 198

Ice CICE 1 deg 6 15 117

0.1 deg 433 1055 112

Land CLM-SE 1 deg 8 18 297

0.25 deg 80 288 150

Ocean POP 1 deg 188 18 114

0.1 deg 2958 1285 34

series file contains only one time-dependent variable produced
by the component code, but it contains the variable data
spanning a much longer duration of time. This means that
an analysis that requires only a few variables spanning a long
duration of time can be done without the scientist downloading
significantly more data than is absolutely necessary and/or
subsetting the data before downloading it. Unfortunately, this
switch to time-series files for long-term storage of CESM data
has presented a number of new challenges that are currently
being addressed by NCAR scientists.

The first new challenge is the actual conversion from time-
slice files—which are still currently the standard output from
CESM component codes—to time-series files for long-term
storage and submission to the ESG. For the CMIP5 project, it
took close to 15 months to post-process model simulation data,
which is comparable to the time it took to generate the raw
data with CESM itself. A large part of the 15 month conversion
time was due to the use of serial tools to perform the necessary
formatting and data transformations. With current forecasts of
data volume for the next CMIP6 suggesting a 5× increase in
data volume in the 2017-2018 timeframe, it is clear that the
current set of serial tools used for converting the data for the
CMIP5 project are insufficient. To overcome this hurdle, a new
solution must be found soon for the time-slice to time-series
transformation.

Another new challenge for the CESM workflow is the
production of climatology (i.e., averaged) data from the time-
series files themselves. Climatology files typically store mul-
tiple variables, averaged over space or time, in one file for
diagnostic purposes such as generating plots. The computation
of these averages from time-slice files has not been considered
a significant bottleneck in the CESM workflow, even though
such computations with the current set of serial tools can take
close to 7 hours for some high-resolution datasets. Unfortu-
nately, the same canonical serial averaging tools, when acting
on time-series files instead of time-slice files, can perform up
to 20× slower, suddenly making the averaging operation a
serious bottleneck. Therefore, a new solution is required to
provide efficient averaging.

In this paper, we present our approach to solving the
two specific problems described above. Due to the need

for solutions that are in place before CMIP6 in 2017, we
have chosen targeted replacement of the specific “bottleneck
software” with light-weight parallel Python alternatives. Our
contributions, detailed in the following sections of this paper,
are listed below.

• We have chosen a design methodology that is consis-
tent with the programming community’s “Principle of
Least Astonishment” (POLA) [14], [15]: implementing
incremental solutions that target bottleneck software and
result in maximum impact with the least disruption to the
CESM community. An added benefit of this approach is
that the solutions are deliverable in the shortest possible
timeframe.

• We have created the PYRESHAPER [16]: a light-weight
parallel Python tool to efficiently solve the CESM work-
flow problem of transforming time-slice files into time-
series files.

• We have created the PYAVERAGER [17]: a light-weight
parallel Python tool to efficiently solve the CESM work-
flow problem of computing climatology averages directly
from time-series files.

II. APPROACH & DESIGN

There are many ways to approach the solution to the
problems discussed in the introduction (§I). When a software
solution already exists but is problematic (as in our case with
the CESM workflow), these various approaches typically lie
somewhere along the spectrum from minimal transformation
of the existing solution to maximal transformation. Maximally
transformative change is required when the existing solution
no longer works for any use case. In contrast, zero transfor-
mative change is usually desired when there is no perceived
problem with the existing solution.

While the existing serial solutions are well understood
to be outdated by both the development and scientific user
communities, a fully transformative solution that implements
the most advanced techniques and best software practices
would require more development time and resources than are
available. More transformative solutions have been proposed
that have taken many years to develop and still do not provide
a comprehensive solution (see §VII). With CMIP6 starting in
the 2017–2018 timeframe, a solution must be in the hands

1926

of scientists well before the start of the CMIP6 runtime,
roughly in mid-2016. Even if a fully transformative solution
could be delivered into the scientists hands in this time-
frame, the additional cost to learn the new user interface
would most likely hamper CESM productivity. Therefore, we
have determined that a more transformative solution—while
admittedly desirable—is not a practical option.

Under these constraints, and borrowing from the Principle
of Least Astonishment, we have opted for a design strategy
that targets the individual “bottleneck” scripts in the CESM
workflow and replaces them with light-weight parallel Python
tools. The advantages of this approach, as compared to a more
transformative approach, are listed below.

• Incremental. The greater problem can be broken into
small “sub-problems” to which a very small, individual
software solution can be devised. Smaller, incremental
solutions can be easily replaced later with minimal dis-
ruption if a solution proves insufficient in the future.

• High impact. Solutions can be targeted to extremely
problematic or underperforming sections of the exist-
ing solution, so that change on the scale of wholesale
transformation can be achieved with a small, incremental
change.

• Rapidly deployed. Each incremental solution can be
small enough to allow very rapid prototyping and pro-
ductization.

• User-centric. Overall usage changes can be kept to a
minimum, if required at all.

• Minimal maintenance. Again, related to the incremen-
talism of the approach, solutions are small enough to
be easily maintained by as few people as possible. We
aim for maintenance to be only a fraction of a single
developer’s time.

• Hierarchical. More complex tasks and solutions can be
built on top other incremental solutions.

III. NEW PRODUCTS

Conforming to the design approach described in the previ-
ous section (§II), we have developed two light-weight Python
tools as solutions to the specific problems described in the
introduction:

1) the transformation of time-slice files into time-series
files, and

2) the computation of climatology (time-averaged) files
from time-series files.

To address each of these problems, we have created the
PYRESHAPER and the PYAVERAGER, respectively.

The original serial scripts, which these two new tools were
created to replace, are Unix shell scripts that make command-
line calls to the NetCDF Operators (NCO) [18]. We chose to
write their replacements in Python for a number of reasons that
address the priorities of the design methodology described in
the previous section.

1) Python lends itself well to rapid prototyping. This is
partly due to the large and growing scientific Python

development community, but this is also partly because
Python is a very high-level language.

2) Python scripting seamlessly integrates into the existing
script-driven CESM workflow.

3) Python code can be easily extended, or shared with
future code, to provide new solutions.

4) Python scripts (using the MPI4PY package) can be easily
parallelized and injected into the existing MPI batch-job
environment used with CESM.

5) Python code, with minimal dependencies, can be easily
ported to other supercomputing systems.

Our new light-weight Python replacements are very small
in size. The PYRESHAPER is roughly 900 lines of code
(excluding comments, blank lines, and documentation), and
the PYAVERAGER is roughly 2000 lines of code (excluding
comments, blank lines, and documentation). Both depend upon
a common module containing simple utility classes and func-
tions, called the ASAPTOOLS, that is roughly 1100 lines of
code (excluding comments, blank lines, and documentation).
It would be easy for a single developer to support and maintain
both tools. The PYRESHAPER was prototyped in a day, and
it was first released a few months later. The PYAVERAGER
was prototyped in a week, and was first released in early
2015. Both tools leverage the capabilities of the NUMPY [19],
MPI4PY [20]–[23], and PYNIO [24] Python packages.

IV. TESTING METHODS & DATASETS

Both of the light-weight Python tools described in the previ-
ous section (§III) were tested for correctness and performance
on NCAR’s Yellowstone IBM iDataPlex cluster [25], [26], the
machine on which much of CESM’s contributions to CMIP6
will be generated. The Yellowstone cluster features 4,536 Intel
Sandy Bridge computational nodes with 16 processor cores per
node and 2 GB of memory per processor core (i.e., 32 GB per
node). Each Yellowstone computational node has a theoret-
ical maximum I/O read/write speed of roughly 1.25 GB/sec,
with 90 GB/sec peak from the filesystem. Yellowstone uses a
centralized file service called the GLobally Accessible Data
Environment (GLADE) with the high-performance GPFS and
16 PB of usable capacity to provide common access to the
Yellowstone storage system from any of the NCAR computing
resource systems.

We evaluate both tools using the same NetCDF datasets.
These datasets are representative output of various component
codes in the CESM model: the Community Atmosphere Model
(CAM), the Community Land Model (CLM), the Parallel
Ocean Program (POP), and the Community Ice CodE (CICE).
All of these sample datasets from their respective CESM
components span 10 years of monthly time-slice files. The
detailed properties of each component dataset can be found
in Table I. The total size of the time-series data (TS Size) and
metadata (MD Size) are shown in separate columns, indicating
the total sizes of each kind of data in the entire dataset (i.e., all
10 years). The number of time-series variables (TS Variables)
is shown in the sixth column.

1927

Within these datasets, there can be 2D (e.g., latitude × lon-
gitude), 3D (e.g., latitude × longitude × level), or even higher-
dimensional variables. A 2D double-precision (i.e., 8 byte)
variable on a 0.1 degree grid (i.e., 3600 × 1800 = 6480000
values) measures about 50 MB of data per time step. For
10 years of monthly data (i.e., 120 months), this measures
5.9 GB. A 3D double-precision variable on the same horizontal
(i.e., latitude × longitude) grid with 30 vertical levels would
then be 30× larger per time step (about 1.5 GB), and the total
amount of data for 10 years of monthly data would be 175 GB.
Assuming about 100 3D time-series variables per time-slice,
this suggests an average time-slice file size for such a dataset
to be about 150 GB. A time-series file, spanning all 10 years
of a 3D variable’s data, would be about 175 GB.

We make an important distinction between time-series data
and metadata. Not all of the data output from the CESM
component codes is time-series data. To a varying degree, de-
pendent upon the individual component code itself, a fraction
of the variables in each dataset are considered “metadata.” This
metadata is used to describe the other data in the dataset, and
it can consist of both time-dependent and time-independent
data. Coordinate data (i.e., the data describing each dimension)
is one common example of metadata, though not the only
example. According to the CF Conventions [27], this metadata
must accompany each component variable in the file, thus
making the file entirely “self-describing.” However, this means
that each time-slice file must duplicate every time-independent
metadata variable across all time-slice files, inefficiently using
disk space. Alternately, each time-series file must contain
every piece of metadata, potentially resulting in an even larger
disk-space inefficiency. The amount and kinds of metadata
in each dataset can influence the performance of both the
PYRESHAPER and PYAVERAGER operations.

As mentioned, the canonical tools that have existed to
perform the same operations for which the PYRESHAPER
and the PYAVERAGER were designed are serial shell scripts
using the NetCDF Operators (NCO). We compare the results
generated by our light-weight Python tools with the results
generated by the NCO scripts for each dataset. If the results
of the new tools are the same as the results of the NCO scripts,
the tool’s results are deemed “correct.” After correctness was
verified for each dataset, we then compared performance of
the new tools against the performance of the NCO scripts.
The performance results are described in the Technical Results
sub-sections of the PYRESHAPER and PYAVERAGER sections
(§V-B and §VI-B). Performance is measured in terms of both
duration (the total time to run the tool and produce correct
output) and throughput (the total input data size divided by
the duration).

In our testing, the PYRESHAPER was used to convert the
datasets shown in Table I from time-slice format to time-series
format, and the PYAVERAGER was used to generate identical
climatology files from both the original time-slice data and
the time-series data. In practice, the PYAVERAGER will act on
the time-series data generated by the PYRESHAPER, but for
these testing purposes the PYAVERAGER tests compared the

Var 1

Slice 1

Va
r 1

Va

r 2

Va
r 3

Slice 5

Va
r 1

Va

r 2

Va
r 3

Slice 3

Va
r 1

Va

r 2

Va
r 3

Slice 4

Va
r 1

Va

r 2

Va
r 3

Slice 2

Va
r 1

Va

r 2

Va
r 3

Var 2

Var 3

Time-Slice
Files

Time-Series
Files

Fig. 1. A graphical representation of the time-slice to time-series (“slice-
to-series”) data transformation operation, where each slice box represents a
time-slice file and each series box represents a time-series file. The smaller
boxes inside each time-slice box represent individual data elements of each
variable at the time associated with the time-slice.

performance and accuracy of the climatology generation step
from both the time-slice and time-series data. In the past, the
original serial NCO scripts to generate the climatology files
acted directly on the time-slice data itself.

V. THE PYRESHAPER

As mentioned in the introduction (§I), the desire to adopt
time-series file formats for long-term data storage has resulted
in a number of challenges, one of which is the challenge of
efficiently converting the raw NetCDF time-slice files, gen-
erated by the individual CESM component codes, into time-
series format. This is the task for which the PYRESHAPER
was designed.

A graphical representation of this transformation can be
seen in Figure 1. Each slice box in the Figure 1 represents a
time-slice file and its contents, and each series box represents
a time-series file and its contents. This transformation of the
data is akin to a transpose operation, where the axes being
transposed are variable and time. In the time-slice format, the
time axis spans multiple files, and in the time-series format,
the variable axis spans multiple files.

Also mentioned in the introduction, the “slice-to-series”
transformation using NCO took close to 15 months with
170 TB of CESM data, suggesting an average operational
speed of 4.5 MB/sec. This is only slightly faster than typical
broadband download speeds and less than 20% of typical hard-
drive write speeds, and a supercomputer with a good parallel
filesystem can perform more than an order of magnitude
better than a single hard drive. Some of the inefficiency
associated with this transformation comes from simple human
inefficiency, because the transformation operation was not
automated as part of the CESM workflow.

1928

Slice 1
Va

r 1

Va
r 2

Va

r 3

Slice 3

Va
r 1

Va

r 2

Va
r 3

Slice 2

Va
r 1

Va

r 2

Va
r 3

Var 1

Var 2

Var 3

Rank 1

Rank 2

Rank 3

Time-Slice
Files

Time-Series
Files

(a) Task Parallelism

Slice 1

Va
r 1

Va

r 2

Va
r 3

Slice 3

Va
r 1

Va

r 2

Va
r 3

Slice 2

Va
r 1

Va

r 2

Va
r 3

Var 1

Var 2

Var 3

Rank 1

Rank 2

Rank 3

Rank 4

Rank 1

Rank 2

Rank 3

Rank 1

Rank 2

Rank 3

Rank 4

Rank 1

Time-Slice
Files

Time-Series
Files

(b) Data Parallelism

Fig. 2. A graphical representations of the time-slice to time-series (“slice-to-series”) data transformation operation, as performed with (a) task-parallel or (b)
data-parallel implementations. With a task-parallel implementation, each time-series variable is processed by a single rank and only that single rank writes
to the time-series file. With a data-parallel implementation, the data of each time-series variable is distributed across multiple ranks, and these multiple ranks
simultaneously write to the time-series file.

A. Technical Approach

Our incremental approach to solving this problem was to
identify the individual NCO-based “slice-to-series” transfor-
mation script used in the existing CESM workflow. After
identifying the NCO script and timing it on our dataset,
we reproduced the same serial functionality in a similar
Python implementation. Then, our approach to speeding up
the “slice-to-series” transformation was to identify obvious
ways of rapidly parallelizing the prototype Python code. We
identified two (2) general approaches to parallelization: task
parallelization and data parallelization. We describe the two
approaches below.

With task parallelization, we parallelize over the output
variables, ideally giving the responsibility of writing a single
time-series file to a single parallel rank. Figure 2a depicts this
approach. This involves every time-slice file being opened
and read by every rank, but only the data needed for the
parallel rank’s assigned time-series file (i.e., the time-series
variable and necessary metadata) is written. This is the sim-
plest parallelization approach, as it effectively implements
the serial approach independently on every parallel rank.
There is no messaging required. However, task parallelism
has limited scalability, as it can only be parallelized up to the
number time-series variables. This is the approach that was
used in the PYRESHAPER, using the external Python modules
MPI4PY [20]–[23] and PYNIO [24].

The second approach, data parallelization, involves dividing
the responsibility of writing each time-series file amongst
the parallel ranks. Figure 2b depicts this approach. Data
parallelism solves the limited scalability problem of the task
parallel approach, and it allows for much greater flexibility
and potential performance. However, data parallelism is more
complex and harder to efficiently implement. A prototype

Fortran code, using the Parallel I/O Library (PIO) [28], [29]
and MPI, was created with an implementation of this approach,
called the NCRESHAPER.

B. Results
Parallel tests were performed with both the PYRESHAPER

(using serial NetCDF3, NetCDF4 classic and NetCDF4 li-
braries) and the NCRESHAPER (using the pNetCDF li-
brary [30], [31]). The NetCDF4 format uses the HDF5 [32]
data format, and can provide lossless compression via the
zlib library. The parallel tests were run using 16 cores on
Yellowstone, with only 4 cores per node to limit saturating
the I/O bandwidth and to provide enough memory to each
job for some of the larger (high-resolution) datasets. There is
nothing special to the choice of 16 cores, other than that it was
less then that fewest number of time-series variables found in
any of the test datasets. The duration and throughput results
are shown in Figures 3a, 3b, 3c, and 3d. We have shown the
serial NCO results with the parallel results for comparison
purposes only.

These results show significant speedups with both the
PYRESHAPER and the NCRESHAPER tools compared with
the original serial NCO scripts, as would be expected. For
low-resolution data, the PYRESHAPER with NetCDF4 classic
format is between 7× and 22× faster than the existing serial
NCO solution. For high-resolution data, the PYRESHAPER
with NetCDF4 classic format is between 11× and 17× faster
than the existing serial NCO solution. While the speedups in
the low-resolution data can be less significant than the high-
resolution data, the slowest low-resolution job was less than
15 minutes, and most were less than 5 minutes.

The throughput results show the PYRESHAPER outperform-
ing the NCRESHAPER, suggesting that the task-parallel im-
plementation is better for almost all datasets. Using NetCDF4

1929

CAM
-F

V (1
 deg)

CAM
-S

E (1
 deg)

CLM
 (1

 deg)

CIC
E (1

 deg)

POP (1
 deg)

100

101

102
D

u
ra

ti
o
n

 [
m

in
]

Slice-to-Series Low-Res Duration

(a)
CAM

-S
E (0

.25 deg)

CLM
 (0

.25 deg)

CIC
E (0

.1 deg)

POP (0
.1 deg)

100

101

102

103

D
u

ra
ti

o
n

 [
m

in
]

Slice-to-Series High-Res Duration

(b)

CAM
-F

V (1
 deg)

CAM
-S

E (1
 deg)

CLM
 (1

 deg)

CIC
E (1

 deg)

POP (1
 deg)

100

101

102

103

T
h

ro
u

g
h

p
u

t
[M

B
/s

e
c]

Slice-to-Series Low-Res Throughput

(c)
CAM

-S
E (0

.25 deg)

CLM
 (0

.25 deg)

CIC
E (0

.1 deg)

POP (0
.1 deg)

101

102

103

104

T
h

ro
u

g
h

p
u

t
[M

B
/s

e
c]

Slice-to-Series High-Res Throughput

(d)

Fig. 3. The duration (in minutes) and throughput (in MB/sec) of the slice-to-series transformations for the low- and high-resolution datasets. The “NC3”,
“NC4”, and “NC4-CL1” labels indicate that the PYRESHAPER was run with NetCDF3, NetCDF4 classic, and NetCDF4 compressed (compression level 1)
output. Note the use of a logarithmic scale on the y-axes.

classic output reduces the performance, and using NetCDF4
compressed output (compression level 1) shows a further
reduction in throughput. In some cases, the NCRESHAPER
outperformed the PYRESHAPER when the PYRESHAPER was
set to use NetCDF4 compressed output. It is also of note that
none of the throughput results reach the theoretical maximum
I/O bandwidth, but the largest datasets approach between 60%
and 90% of the theoretical bandwidth.

In our last test, we performed a scaling study of the
PYRESHAPER tool with some of the larger datasets, the high-
resolution CAM-SE (0.25 deg), CLM (0.25 deg), and CICE
(0.1 deg) datasets. Due to the task-parallel nature of the
PYRESHAPER, one can expect that the amount of parallelism
available from the PYRESHAPER is limited by the number of
time-series variables in the time-slice files. Figure 4 shows the
results of this study, clearly showing saturation as the number
of cores (16 per node) used approaches the number of time-
series variables in the datasets. Recall from Table I that the
CAM-SE (0.25 deg) dataset has 198 time-series variables, the
CLM (0.25 deg) dataset has 150 time-series variables, and the
CICE (0.1 deg) dataset has 112 time-series variables. The run
times to which each dataset saturates depend greatly on the
size of each time-series variable in the dataset and the amount

0 50 100 150 200

Number of Cores

0

10

20

30

40

50

60

T
im

e
 [

m
in

]

PyReshaper Scaling

CAMSE-0.25

CLM-0.25

CICE-0.1

Fig. 4. This figure shows the parallel scaling of the PYRESHAPER on
the high-resolution CAM-SE (0.25 deg), CLM (0.25 deg), and CICE (0.1 deg)
datasets. The total time to complete the slice-to-series transformation is shown
versus the number of cores (16 cores per node) used for the operation on
Yellowstone. One can see the performance saturate as the number of cores
used for the operation approaches the number of time-series variables in the
dataset.

of metadata.

VI. THE PYAVERAGER

The analysis of climate simulation data typically involves
two phases: the calculation of climatological average files, and

1930

the execution of component specific diagnostic packages. The
diagnostic packages primarily generate large numbers of plots,
which we did not identify as a significant bottleneck in the
workflow. Instead, our effort concentrated on the I/O intensive
calculation of the climatology files themselves. This is for what
the PYAVERAGER was designed.

The climatology files are typically produced by calling
NCO commands in serial from a shell script. By itself,
this serial approach is problematic. However, as mentioned
in the introduction, the transition from time-slice to time-
series format has stressed this existing approach even further.
Currently, the diagnostic packages expect as input a small
number of climatology files containing all fields. Using time-
slice input files, a single NCO command can generate the
necessary inputs. However, with time-series data, a three step
process is required:

1) extraction of the variables from the time-series data,
2) computation of an average, and
3) appending of the averaged results to the final file.

In each of these three steps, one must open a file, read the
values, compute, and write. This approach, with time-series
files, slowed the production of the climatology files down by
a factor of around 20×.

The current method is also a poor match for high-resolution
datasets. Not only do the high-resolution datasets take consid-
erably more time to generate the climatology files, but the
serial NCO jobs can often fail due to memory constraints.
While previous work added task parallelism into the diagnostic
packages using SWIFT [33], [34], the SWIFT approach still
retains some of the underlying memory limitation issues.
Furthermore, because SWIFT is designed to orchestrate the
execution of computationally expensive tasks, it is not an
ideal solution for more data-intensive calculations where data
movement should be minimized.

A. Technical Approach

Again, our approach to speeding up the averaging operations
within the CESM diagnostic packages was similar to the
approach described for the PYRESHAPER. We identified the
climatology computation scripts that were part of the CESM
diagnostic packages and reimplemented them in serial Python.
Guided by our experiences with the PYRESHAPER, we chose
a new task parallelization approach, using the external Python
modules MPI4PY [20]–[23] and PYNIO [24], to improve the
performance of the averaging operations. The resulting light-
weight Python tool we named the PYAVERAGER.

While the PYAVERAGER currently utilizes task paralleliza-
tion, the execution differs slightly from the task paralleliza-
tion within the PYRESHAPER (and the one achievable with
SWIFT). Our approach partitions the available MPI tasks into
sub-communicators. Each sub-communicator receives a local
list of averages to compute and each average is computed in
parallel within the sub-communicator. Each sub-communicator
reserves a dedicated MPI task whose only job is to create
the output climatology file. All other MPI tasks within the
sub-communicator read one time-series variable at a time and

Var 1 Var 2 Var 3

Rank 1 Rank 2 Rank 3

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Ti
m

e-
Se

ri
es

 F
ile

s

Rank 0

Ti
m

e A
ve

ra
ge

s
(I

nt
er

na
l M

em
or

y)

Ti
m

e A
ve

ra
ge

d
C

lim
at

ol
og

y
Fi

le

Av
g

Va
r 1

Av
g

Va
r 2

Av
g

Va
r 3

Fig. 5. A task parallel approach to averaging time series files. A list of fields
for temporal averaging are decomposed across MPI ranks. Once the temporal
average has been calculated, the results are gathered to single rank where it
is then written to disk. This process exists for each sub-communicator.

accumulate into an averaging buffer. The averaging buffer is
then sent to the MPI rank that subsequently generates the
climatology file. Typically, climate analysis involves multiple
types of averages. For example, in addition to a yearly average,
multiple seasonal averages, as well as monthly averages, are
typically required. Figure 5 illustrates this operation where a
single type of average is necessary.

B. Results

To test the performance of the PYAVERAGER, we calcu-
lated the averages of the various CESM component datasets
described in Table I, using both the time-slice format and time-
series formats as input. For each year of the CAM and CLM
models, twelve monthly mean files, four seasonal averages,
and one yearly average were computed. For each year of
the POP and CICE time-slice data, we calculated the yearly
average. The CICE time-series format convention dictates
that the data be split into separate northern and southern
hemisphere files with data loss at the tropics. While both the
time-series and time-slice datasets contain the same number
of variables, time-series files at both CICE resolutions are
smaller than the time-slice datasets because of the grid size
differences. This split results in the generation of twenty yearly
average files, one for each year and hemisphere. This must
be considered when comparing the time-slice and time-series
results for the CICE dataset. All methods used produced output
in the NetCDF4 format without compression.

We measured the time to creating the averages from time-
slice and time-series data using the original NCO scripts,

1931

CAM
-F

V (1
 deg)

CAM
-S

E (1
 deg)

CLM
 (1

 deg)

CIC
E (1

 deg)

POP (1
 deg)

10-1

100

101

102

103
D

u
ra

ti
o
n

 [
m

in
]

Averager Low-Res Duration

(a)
CAM

-S
E (0

.25 deg)

CLM
 (0

.25 deg)

CIC
E (0

.1 deg)

POP (0
.1 deg)

10-1

100

101

102

103

104

D
u

ra
ti

o
n

 [
m

in
]

Averager High-Res Duration

(b)

CAM
-F

V (1
 deg)

CAM
-S

E (1
 deg)

CLM
 (1

 deg)

CIC
E (1

 deg)

POP (1
 deg)

10-1

100

101

102

103

104

T
h

ro
u

g
h

p
u

t
[M

B
/s

e
c]

Averager Low-Res Throughput

(c)
CAM

-S
E (0

.25 deg)

CLM
 (0

.25 deg)

CIC
E (0

.1 deg)

POP (0
.1 deg)

100

101

102

103

104

T
h

ro
u

g
h

p
u

t
[M

B
/s

e
c]

Averager High-Res Throughput

(d)

Fig. 6. The I/O throughput (in MB/sec) and duration (in minutes) of the climatological averaging for the PYAVERAGER, compared with the original serial
NCO method and the limited parallel SWIFT method. All methods were outputted in the NetCDF4 format.

SWIFT scripts, and the PYAVERAGER. All of the averages
were computed on the Yellowstone cluster, but because of
memory and scheduling requirements, different averages were
sent to different queues. The low-resolution results for the
serial NCO method were run on one dedicated node on Yel-
lowstone. Because of the scheduling requirements of SWIFT,
the low-resolution SWIFT scripts were run in the Geyser
queue on Yellowstone using 4 nodes with 4 cores per node
(16 cores total). The low-resolution PYAVERAGER jobs were
executed on Yellowstone using 20 nodes with 8 cores per
node (160 cores total). The high-resolution results for the
serial NCO method required more memory and required us to
run within the GPGPU and BigMem queues on Yellowstone.
Again because of SWIFT’s scheduling requirements, the high-
resolution SWIFT scripts were run in the Geyser queue on
Yellowstone using 4 nodes with 4 cores per node (16 cores
total), except for the POP 0.1 degree results from time-slices.
These were generated in the BigMem queue using 4 nodes
with 1 core per node (4 cores total). The high-resolution
PYAVERAGER were all run on Yellowstone using 20 nodes
with 8 cores per node (160 cores total), except for the POP
0.1 degree results from time-slices. These were generated in
the Geyser queue.

The timing results for the NCO scripts, SWIFT scripts, and

the PYAVERAGER are illustrated in Figure 6. The figures show
that the worst performing option is NCO acting on time-series
input, with these calculations taking the longest amount of
time. While the durations for SWIFT and NCO acting on
time-series input show that some improvement was gained
by adding task parallelism, the concerning problem is that
in most cases the averages computed from time-series input
still take more time to compute than the original serial NCO
method acting on time-slice input. The PYAVERAGER results
show a considerable amount of improvement over the results
for NCO acting on time-series input, and are comparable or
faster than the results for the original NCO method acting
on time-slice input. Within the four categories of CESM
data that we compared (low-resolution time-slice input, low-
resolution time-series input, high-resolution time-slice input,
high-resolution time-series input), the PYAVERAGER was able
to reduce the time it takes to compute the climatological
averages for CESM data by a factor at least 2X, 26X, 3.5X,
400X, respectfully.

We see a similar pattern in the throughput results. The
throughput increased using SWIFT over the equivalent serial
NCO tool method. We also see a severe performance hit while
computing the averages from time-series input using both the
serial NCO and SWIFT methods. This further demonstrates

1932

0 50 100 150 200 250 300

Number of Cores

0

5

10

15

20

T
im

e
 [

m
in

]

PyAverager Scaling (CAM-SE 0.25 deg)

Read

Average

Write

Total

Fig. 7. The execution time for the PYAVERAGER computing twelve monthly
mean files, four seasonal averages, and yearly average for the CAM-SE 0.25
data set. The Read, Write, and Average measurements represent the max time
it took a task read the data slices from disk, compute the average of these
slices, and then write the results to disk. The Total measurements represent
the total time the PYAVERAGER took to run.

the need for a new tool to calculate climatological averages
from time-series input. We can also see that the PYAVERAGER
throughput is substantially better than all of the other methods
acting on time-series input.

In Figure 7, we examine the scalability of the PYAVER-
AGER. We see that the reading of variables takes roughly
the same amount of time as the writing operation. The total
time, read time, and write time all scale to about 128 cores
(16 compute nodes with 8 cores per node). Based on these
results, the application is I/O bound. In future versions of
the PYAVERAGER, we will examine ways to improve this
performance.

VII. RELATED WORK

The need to rapidly and efficiently post-process climate
simulation data has been recognized for a number of years.
We next describe related work and explain our decision to
develop new Python-based tools instead of utilizing existing
tools.

The Parallel Climate Analysis Toolkit (PARCAT) [35] pro-
vides similar functionality to the PYAVERAGER, but it utilizes
C (instead of Python) and the Parallel NetCDF (PNETCDF)
library to enable parallel access to NetCDF files. PARCAT
utilizes both task and data parallelism, and it is a command-
line tool that fits well into a script-driven workflow, such as
CESM. However, it does not provide the exact functionality
needed, and it’s implementation in C makes it less easily
extensible than a similar object-oriented Python tool.

The Ultrascale Visualization Climate Data Analysis Tools
(UV-CDAT) project [36]–[38], which uses PARCAT, aims to
provide a comprehensive set of tools to enable the analysis of
large scale climate data sets, including parallel visualizing and
post-processing computation. Its large size and difficulty to
install impose significant barriers to adoption within the CESM
workflow. Additionally, if UV-CDAT were to be adopted, its
whole-sale transformation of the CESM user interface would
require user re-education and would consequently take a toll
on user productivity.

Another existing tool is the Parallel Toolkit for Extreme
Climate Analysis (TECA) [39], which is a parallel toolkit
whose focus is on performing a particular set of operations
to identify extreme events in large climate datasets. TECA is
still currently under development, and it was not been publicly
released yet.

The NetCDF Operators (NCO) [18] are a set of executables
which perform single atomic operations on NetCDF input
files. The NCO toolset provides the functionality of both the
PYRESHAPER and the PYAVERAGER and more. While NCO
has supported parallelism through both MPI and OpenMP, the
parallelism is typically targeted at computationally expensive
routines and not I/O intensive operations. The atomic design
of its operators typically require multiple different NCO
operators to be used in series, often resulting in the use of
the disk system to store intermediate results.

Similar in nature to the NetCDF Operators, the Climate
Data Operators (CDO) [40] are also capable of much the
same operations. However, CDO supports a pipelined-based
parallelism which allows for the chaining of multiple atomic
operators while maintaining intermediate products in memory.
Unfortunately, while the operations of the PYRESHAPER and
PYAVERAGER can be represented by a chain of operations,
it is not possible to minimize the amount of data movement
either from disk or through memory using pipeline parallelism.

Lastly, Pagoda [41] is designed to be a set tools that mimic
the NCO tools, but relies on Global Arrays, PNETCDF, and
MPI for parallelization. However, these tools have some of the
same problems as the NCO tools and would still require three
separate steps when averaging time-series files.

VIII. CONCLUSION

Both of the tools described in this paper, the PYRESHAPER
and the PYAVERAGER, took only days to prototype and a
few months to implement and deploy. Since they replace
existing scripts in the CESM workflow, and can operate in the
same batch-job MPI framework, they seamlessly fit into the
existing CESM workflow with minimal disruption to CESM
users. Their codebase is small, and their complexity is low,
making them approachable and easily understandable from the
perspective of an existing CESM user. Additionally, the way
these tools were developed, as light-weight parallel Python
tools, allows them to be easily extended to address other
problems that might arise in the future.

For each targeted bottleneck in the CESM workflow that
each tool addresses, we achieved substantial performance
improvements. We achieved an average of 13× speedup over
the existing CESM workflow tools with the PYRESHAPER on
high-resolution data. The PYAVERAGER achieved an average
speedup of 400× over the existing CESM workflow tools on
high-resolution time-series data. These numbers alone show a
substantial success, though we believe that both tools can be
improved further. There are a number of improvements that we
are planning for future releases of these tools, including data-
parallelism in the PYRESHAPER and PYAVERAGER, which
should substantially improve write-speeds and scalability. Still,

1933

even in their simple initial releases, they satisfy the need of
the CESM community.

Other challenges resulting from the adoption of time-series
formats for long-term storage certainly exist. Certainly, as
well, new challenges will be uncovered as research continues.
We believe that by judicial application of the same incremental
development approach, building off of the tools that we have
already created, we will address these issues with equal
success as they arise.

ACKNOWLEDGMENTS

The authors would like to thank all of the CESM developer
staff at NCAR for their assistance in developing and testing
the PYRESHAPER and the PYAVERAGER.

REFERENCES

[1] “CMIP5: Coupled Model Intercomparison Project Phase 5,” http://
cmip-pcmdi.llnl.gov/cmip5/.

[2] “IPCC – intergovernmental panel on climate change,” http://www.ipcc.
ch/organization/organization.shtml.

[3] T. F. Stocker, D. Qin, G.-K. Plattner, M. M. Tigner, S. K. Allen,
J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Eds., Climate
Change 2013: The Physical Science Basis. Cambridge University
Press, 2013, Working Group I of the Intergovernmental Panel on Climate
Change (IPCC).

[4] “CESM: Community Earth System Model,” http://www2.cesm.ucar.
edu/.

[5] “National Center for Atmospheric Research: Home,” http://ncar.ucar.
edu/.

[6] “CAM: Community Atmosphere Model,” http://www.cesm.ucar.edu/
models/cesm1.2/cam/.

[7] “CLM: Community Land Model,” http://www.cesm.ucar.edu/models/
cesm1.2/clm/.

[8] “POP: Parallel Ocean Program,” http://www.cesm.ucar.edu/models/
cesm1.2/pop2/.

[9] “CICE: Community Ice CodE,” http://www.cesm.ucar.edu/models/
cesm1.2/cice/.

[10] “Earth system grid,” https://www.earthsystemgrid.org/home.htm.
[11] G. A. Meehl, R. Moss, K. E. Taylor, V. Eyring, R. J. Stouffer,

S. Bony, and B. Stevens, “Climate model intercomparisons: Preparing
for the next phase,” Eos, Transactions American Geophysical
Union, vol. 95, no. 9, pp. 77–78, 2014. [Online]. Available:
http://dx.doi.org/10.1002/2014EO090001

[12] “Unidata: NetCDF,” http://www.unidata.ucar.edu/software/netcdf/.
[13] “CISL Research Data Archive,” http://rda.ucar.edu/.
[14] P. Seebach, “The cranky user: The Principle of Least Astonish-

ment,” http://www.ibm.com/developerworks/library/us-cranky10/, Au-
gust 2001.

[15] A. Ronacher, “Python and the Principle of Least Astonishment,” http:
//lucumr.pocoo.org/2011/7/9/python-and-pola/, July 2011.

[16] “The PyReshaper (GitHub),” https://github.com/NCAR-CISL-ASAP/
PyReshaper.

[17] “The PyAverager (GitHub),” https://github.com/NCAR-CISL-ASAP/
pyAverager.

[18] The NCO Project, “NCO Homepage,” http://nco.sourceforge.net/, 2014.
[19] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A

Structure for Efficient Numerical Computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[20] L. Dalcin, P. Kler, R. Paz, and A. Cosimo, “Parallel Distributed Com-
puting using Python,” Advances in Water Resources, vol. 34, no. 9, pp.
1124–1139, 2011.

[21] L. Dalcin et al., “Bitbucket: mpi4py/mpi4py,” https://bitbucket.org/
mpi4py/mpi4py.

[22] L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[23] L. Dalcin, R. Paz, M. Storti, and J. D’Elia, “MPI for Python: perfor-
mance improvements and MPI-2 extensions,” Journal of Parallel and
Distributed Computing, vol. 68, no. 5, pp. 655–662, 2008.

[24] “PyNIO,” https://www.pyngl.ucar.edu/Nio.shtml.
[25] “Yellowstone: High-performance computing resource,” https://www2.

cisl.ucar.edu/resources/yellowstone.
[26] R. Loft, A. Andersen, F. Bryan, J. M. Dennis, T. Engel, P. Gillman,

D. Hart, I. Elahi, S. Ghosh, R. Kelly, A. Kamrath, G. Pfister, M. Rempel,
J. Small, W. Skamarock, M. Wiltberger, B. Shader, P. Chen, and
B. Cash, “Yellowstone: A dedicated resource for earth system science,”
in Contemporary High Performance Computing: From Petascale Toward
Exascale, Volume Two, 1st ed., ser. CRC Computational Science Series,
J. S. Vetter, Ed. Boca Raton: Chapman and Hall/CRC, 2015, vol. 2,
p. 262.

[27] B. Eaton, J. Gregory, H. Centre, B. Drach, K. Taylor, and S. Hankin,
“NetCDF Climate and Forecast (CF) Metadata Conventions: Version
1.6, 5 December, 2011,” http://cfconventions.org/Data/cf-conventions/
cf-conventions-1.6/build/cf-conventions.pdf.

[28] J. M. Dennis, J. Edwards, R. Loy, R. Jacob, A. A. Mirin, A. P. Craig,
and M. Vertenstein, “An application-level parallel i/o library for earth
system models,” Int. J. High Perf. Comput. Appl., vol. 26, pp. 43–53,
February 2012, doi: 10.1177/1094342011428143.

[29] J. M. Dennis, J. Edwards, R. Jacob, R. Loy, A. Mirin, and M. Vertenstein,
“PIO: Parallel I/O Library,” https://code.google.com/p/parallelio/, 2014.

[30] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallager, and M. Zingale, “Parallel netCDF:
A high-performance scientific I/O interface,” in In Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), November 2003.

[31] “Parallel netCDF: A Parallel I/O library for NetCDF file access,” http:
//trac.mcs.anl.gov/projects/parallel-netcdf.

[32] The HDF Group, “Hierarchical Data Format, version 5,” http://www.
hdfgroup.org/HDF5/, 1997.

[33] M. Woitaszek, J. M. Dennis, and T. Sines, “Parallel high-resoution
climate data analysis using swift,” in 4th Workshop on Many-Task Com-
puting on Grids and Supercomputers (MTAGS), Seattle, WA, November
2011.

[34] S. Mickelson, R. Jacob, M. Wilde, and D. Brown, “How to use the
task-parallel omwg/amwg diagnostic packages,” http://www.cesm.ucar.
edu/events/ws.2012/Presentations/Plenary/parallel.pdf.

[35] B. Smith, D. M. Ricciuto, P. E. Thornton, G. Shipman, C. A. Steed,
D. Williams, and M. Wehner, “Parcat: Parallel climate anlysis toolkit,”
Procedia Computer Science: Proceedings of the International Confer-
ence on Computational Science, ICCS 2013, vol. 18, pp. 2367–2375,
2013, doi:10.1016/j.procs.2013.05.408.

[36] D. N. Williams and et. al., “Ultrascale visualization of climate data,”
Computer, vol. 46, no. 9, pp. 68–76, September 2013.

[37] D. Williams et al., “Ultrascale visualization climate data analysis tools:
Three-year comprehensive report,” Lawrence Livermore National Lab-
oratory, Tech. Rep. LLNL-TR-643624, September 2013.

[38] “Ultrascale visualizaiton climate data analysis tools,” http://uvcdat.llnl.
gov/.

[39] Prabhat, O. Ruebel, S. Byna, K. Wu, F. Li, M. Wehner, and W. Bethel,
“Teca: A parallel toolkit for extreme climate analysis,” Procedia
Computer Science: Proceedings of the International Conference on
Computational Science, ICCS 2012, vol. 9, pp. 866–876, 2012, doi:
10.1016/j.procs.2012.04.093.

[40] Max Planck Institute for Meteorology, “CDO: Climate Data Operators,”
https://code.zmaw.de/projects/cdo.

[41] Pacific Northwest National Laboratory, “Pagoda: Parallel Analysis of
Geoscience Data,” https://svn.pnl.gov/gcrm/wiki/Pagoda.

