
Enabling Scientific Data Storage and Processing on
Big-data Systems

Saman Biookaghazadeh*, Yiqi Xu†, Shujia Zhou‡, Ming Zhao*†
* School of Computing, Informatics, and Decision Systems Engineering, Arizona State University

† School of Computing and Information Sciences, Florida International University
‡ Northrop Grumman Information Technology

Abstract—Big-data systems are increasingly important for
solving the data-driven problems in many science domains
including geosciences. However, existing big-data systems cannot
support the self-describing data formats such as NetCDF which
are commonly used by scientific communities for data distribution
and sharing. This limitation presents a serious hurdle to the
further adoption of big-data systems by science domains and
prevents scientific users from leveraging these systems to improve
their productivity. This paper presents a solution to this problem
by enabling big-data systems to directly store and process
scientific data. Specifically, it enables Hadoop to efficiently store
NetCDF data on HDFS and process them in MapReduce using
convenient APIs. It also enables Hive to support standard queries
on NetCDF data, transparently to users. The paper also presents
an evaluation of the proposed solution using several representative
queries on a typical geoscientific dataset. The results show that the
proposed approach achieves substantial speedup (up to 20 times)
and space saving (83% reduction), compared to the traditional
approach which has to convert NetCDF data to CSV format for
Hadoop and Hive to use them.

Keywords— Scientific data, big data, NetCDF, Hadoop
I. INTRODUCTION

Big data is an important computing paradigm increasingly
used by many disciplines for knowledge discovery, decision
making, and other data-driven tasks based on processing and
analyzing large volumes of data. Big-data systems are typically
built upon programming frameworks that can effectively
express data parallelism and exploit data locality (e.g.,
MapReduce [1]) and storage systems that can provide high
scalability and availability (e.g., Google File System [2],
Hadoop HDFS [3]). A variety of high-level data services (e.g.,
BigTable [4], HBase [5], Hive [6]) can be further built upon
such frameworks.

Typical geoscience models have multi-scale physical
processes. For example, climate and weather models have
physical processes involving spatial resolutions from meters to
miles and temporal resolutions from seconds to hours. With
current high performance computing power, ultra-high-
resolution, long-time simulations are feasible with a few
thousands of computer processors. Consequently huge amounts
of data (easily over 100 TB) are produced. Big-data
technologies are demanded to analyze the simulation outputs to

address questions such as climate change and hurricane
tracking.

Scientific data are often stored in self-describing data
formats (e.g., NetCDF [7], HDF5 [8]). Self-describing data are
understandable to both human and machines, with which
programs can use existing procedures to not only access but
also convert and probe the data. Today observational data as
well as simulation data of geosciences are being widely shared
among peer research organizations and available for public.
Therefore, self-describing data formats are crucial for enabling
this kind of data distribution and sharing.

However, big-data systems do not support these scientific
data formats. For example, a NetCDF file loaded into HDFS as
raw data cannot be processed by MapReduce applications.
Consequently, scientific users who wish to use big-data
computing for their applications often have to convert their data
to a much more primitive data formats (e.g., Comma Separated
Values (CSV)) which causes substantial time and space
overhead. For instance, our results show that, to convert a 20GB
NetCDF3 file to CSV, it requires 119GB disk space and 1.4
hours on a commodity server. This overhead is even worse
when considering that the data need to be replicated at least
three times on a big-data system in order to tolerate failures.
Therefore, lack of support for scientific data formats presents a
serious hurdle to the further adoption of big-data technologies
for data-driven sciences, including geosciences, and to the
further improvement of scientific productivity in such domains.

This paper presents an approach to addressing the above
issue by enabling commonly used big-data systems to directly
support the storage and analysis of scientific data stored using
self-describing formats. First, we extend Hadoop, the most
widely used big-data system to store NetCDF data on HDFS,
and to allow MapReduce jobs to parse and process these data.
We also optimize MapReduce to read variables of the NetCDF
data in batch for much improved performance. Second, we
extend Hive, a commonly used query-based big-data system to
allow users conveniently using queries to process NetCDF data
stored on HDFS. Our extensions are largely transparent to
users. In MapReduce, our new APIs for processing NetCDF
data are provided in the same fashion as the existing APIs for
other data formats, and users can conveniently use them in their
programs. In Hive, our handling of NetCDF data is completely
transparent to users who can use standard HIVE SQL queries
to easily process the data. The first two authors contributed equally to this work.

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1917

We have developed a prototype of this approach based on
Hadoop 2.5.2, Hive 1.2.0, and NetCDF3. Our prototype allows
NetCDF3 data to be directly stored on HDFS and be directly
used by MapReduce jobs and Hive queries. We have evaluated
the performance of our approach using a typical geoscience
dataset on a nine-node compute cluster. The results show that
our approach is able to substantially improve both performance
and disk space consumption compared to the traditional CSV-
based approach. It increases performance by up to 20 times and
decreases the disk space usage by 83%.

To the best of our knowledge, our work is the first to
provide native support of widely used scientific data format on
big-data systems. Related work [11] also considered the use of
HDFS to store scientific data and MapReduce to implement
array queries. But in its design MapReduce interacts with data
via the scientific data model and loses control and knowledge
of the physical data distribution, which causes performance
problems due to the mismatch between the logical view and
physical view of the data. In comparison, our approach enables
big-data systems, including both MapReduce and Hive, to
directly support scientific data and optimize task scheduling
based on the physical data placement. Therefore, our approach
allows users to conveniently and transparently use the existing
big-data frameworks to process scientific data with good
scalability.

The rest of this paper is organized as follows. Section 2
introduces the background and related work. Sections 3
presents the design and implementation of our approach.
Section 4 discusses the experimental evaluation results. Section
5 concludes the paper and outlines the future work.

II. BACKGROUND AND RELATED WORK
A. Big-data Systems

Typical big-data systems are built upon a highly scalable
and available distributed storage system. For example, Google
File System (GFS) [2] and its open-source version, Hadoop
Distributed File System (HDFS) [3], provide fault tolerance
while storing massive amounts of data on a large number of
datanodes built with inexpensive commodity hardware; while
MapReduce [1] applications are executed in a data-parallel
fashion on the datanodes where their data are stored. High-level
data services such as databases (e.g., BigTable [4], HBase [5],
Hive [6]) can also be built upon such a big-data computing
framework.

When data are loaded into a big-data file system such as
GFS and HDFS, they are split into large data blocks which are
distributed across the datanodes in the system. Both the map
and reduce phases of a MapReduce application can spawn large
numbers of map and reduce tasks, depending on the size of the
input, on the datanodes of a big-data system to process the data
in parallel. To take advantage of data locality, which is key to
the performance of MapReduce applications, the map tasks are
preferably scheduled onto the datanodes that have the data
blocks for them to process locally, thereby shipping computing
to the data. Moreover, the data blocks on the big-data file
system are typically replicated at least three times across the

datanodes and across the racks of nodes in the system in order
to tolerate node-level and rack-level failures.

Big-data systems often support several common data
formats for storing data on the systems. For example, Hadoop
supports SequenceFile, NLine, KeyValue, FixedLength, etc. It
provides libraries for MapReduce jobs to parse data stored
using these formats on HDFS and process them in parallel
based on the layout of the data across the datanodes. There are
also other related libraries (e.g., Apache Parquet [12]) which
support more complex data formats on Hadoop. However,
because such big-data systems were originally not designed
with scientific data in mind, they typically do not support the
self-describing data formats commonly used by scientific data.

While MapReduce makes it much easier to program for
data parallelism, it is still an involved and time-consuming task.
Therefore, many users prefer using high-level data services
such as Hive to simplify the use of big-data systems for
processing their data. Hive stays on top of Hadoop and enables
users to process data stored in HDFS using common SQL
queries. It transforms a query into a set of map and reduce tasks
to be deployed on Hadoop, and returns the final result back to
the user.
B. Need of Support for Scientific Data Formats in Big-data

Systems
The de facto data formats used in many science domains,

including geosciences, are the self-describing formats such as
NetCDF [7] and HDF [8]. They provide a concise and efficient
way of storing array-oriented scientific data in binary. They are
self-describing and machine-independent, which means that the
description of data is not only well-defined in machine-
understandable way but also meaningful to human and
conforms to relevant conventions [8]. For scientific
applications, geosciences in particular, a wide variety of named
dimensions and variables have been frequently used. They
share the usage of a large scientific user community. Existing
conventions enable the cooperation and reuse of both standards
and codes to transform, combine, analyze, and display specified
fields of the data [7]. For example, the setting of grids and
physical units for climate and weather simulations vary among
different models. Self-describing data formats facilitate the
sharing of climate and weather data. NetCDF and HDF have
been used in Earth System Grid [13]. The Earth System Grid
Federation (ESGF) is an international collaboration with a
current focus on serving the World Climate Research
Programme’s (WCRP) Coupled Model Intercomparison
Project (CMIP) and supporting climate and environmental
sciences in general.

Many science domains are increasingly data driven,
requiring the processing of large amounts of simulation,
experimental, and observational data for scientific discoveries.
For example, the experimental data from Large Hardon
Collider may provide better answers to the fundamental
questions in physics; the observational data from the upcoming
Large Synoptic Survey Telescope will provide greater insights
into the structure of the Universe; and to improve the
predictability of hurricane tracking, a large amount of real-time

1918

sensor data from various types of instruments need to be
processed and incorporated into forecasting models.

 Therefore, big-data systems are also important platforms
for these science domains by providing the necessary scalability
and reliability for storing and processing big scientific data.
They are indeed increasingly used by scientists from different
domains including geosciences. However, existing big-data
systems do not support the data formats commonly used by
scientific data. For example, one can load NetCDF files into
HDFS as binary data, but MapReduce applications cannot
interpret these data properly for processing. Consequently,
users often resort to a cumbersome approach to using these
systems for processing their data. First, they have to convert
their data stored in self-describing format, e.g., NetCDF, to
plain-text format using tools such as ncdump [14]. After
conversion, the file needs to be further translated to a multi-
column table format such as CSV that is supported by a big-
data system such as Hadoop.

This approach is not only cumbersome to users but also
incurs substantial time and space overhead. First, the ncdump
conversion increases the output file size to about three times of
the original NetCDF data size. The further translation to Hive
accepted format, adding dimension information to each row,
adds an additional two to three times of space overhead. Hence,
the space usage of this approach is bloated up to at least six
times of the original NetCDF data size. Because these data need
to be replicated at least three times on the big-data system, the
absolute space usage can be prohibitive for large scientific data
sets. Second, it takes time, storage, and network I/O bandwidth
to load the data into HDFS. Because the data size is increased
multi-fold by the conversion, this overhead is also increased
substantially. Finally, as the data size gets bloated up by the
conversion, it requires more map tasks to process the data, and
more time to perform I/O tasks on the data, which in the end
causes the data processing to consume much more resources
and time.

Therefore, there is an urgent need to enable commonly used
big-data systems to support scientific data formats. While there
are more advanced data formats (e.g., Orc [8] and Parquet [9])
in big-data systems, they cannot be directly used to store
scientific data that come in a self-describing format. SciHadoop
is a related project which stores scientific data on HDFS and
implements its custom array query language using MapReduce
jobs [11]. But it assumes that MapReduce is not aware of the
physical placement of the data blocks and the data partition is
done using the logical view of the data. This causes serious
performance issues because a data block that is assumed to be
local by a map task may not be entirely local, and the paper
proposed several techniques to address these issues. In contrast,
in our approach we build the support for scientific data directly
in Hadoop where MapReduce is always aware of the physical
distribution of the data and does not have the problems in
SciHadoop. Moreover, our approach allows scientific users to
conveniently use existing big-data tools to work with scientific
data. Users can program MapReduce jobs to process scientific
data in the same manner as other types of data. Users can also
use popular high-level data services such as Hive to process the

scientific data using simple queries, where the handling of data
is completely transparent to the users. Therefore, to the best of
our knowledge, this work is the first to provide native support
of scientific data in widely used big-data systems. The rest of
this paper presents the details of our approach.

III. DESIGN AND IMPLEMENTATION
A. Enabling Hadoop to Support Scientific Data

Hadoop employs parallel map and reduce tasks to complete
a large job. Each map task gets a split of the input data and
performs the computation preferably on the node where the data
locates. There is an InputFormat for each type of input file
format, which handles the splitting of input data. Afterwards,
the splits are given to map tasks which each retrieves its
assigned split using a RecordReader.

To support NetCDF data, our design is to introduce new
NetCDFInputFormat and NetCDFRecordReader APIs in
Hadoop for MapReduce programs to use for processing the
NetCDF data stored on HDFS. Figure 1 illustrates the overall
architecture of our approach. To implement these new APIs, we
exploit the standard NetCDF library to implement a NetCDF
Driver, which can understand the internal data structure of the
NetCDF data and access the data according to the structure.
NetCDFRecordReader uses this NetCDF Driver to read the
records from the NetCDF data, where each record corresponds
to a row in the multi-dimensional array data, e.g., the
temperatures of different locations (latitude, longitude) at a
specific time. In this way, the extended Hadoop can support all
the data structures that are supported by NetCDF.

To ensure good performance of the map tasks that process
NetCDF data, NetCDFInputFormat needs to split the input data
based on the physical distribution of the data so that each map
task can get a split that is locally stored for processing. To
achieve this, NetCDFInputFormat uses the NetCDF Driver to
find out the offsets of the records and compare them to HDFS
block boundaries. With this logical record to physical block

Figure 1. Architecture of the proposed approach for enabling

scientific data storage and processing in big-data systems

1919

mapping, NetCDFInputFormat can ensure that the records in a
split largely falls under the same HDFS block so that the map
task that is assigned the split can find most of its data locally.

Finally, our approach also employs an optimization for
processing large NetCDF dataset. Big-data systems process
large volumes of data in bulk, and are thus particularly sensitive
to I/O efficiency in its design. Therefore, rather than reading a
variable value at a time from the multi-dimensional array stored
in NetCDF, the NetCDFRecordReader uses a single read
operation to retrieves a number of variables, e.g., an entire row
of values from the multi-dimensional array. Experiments have
confirmed that this optimization can speed up the data
processing by up to 500 times compared to reading one valuable
value at a time.
B. Enable Hive to Support Scientific Data

Hive is a data warehousing solution which is built on top of the Hadoop framework [1]. Users can query data stored in HDFS using SQL-style declarative language. Hive would process and generate a plan, which include a set of MapReduce jobs to be executed on Hadoop. Hive allows scientists to conveniently query the data without having to handcraft the MapReduce application which is a lot more difficult and time-consuming. For example, a geoscientist can use a simple query such as
“SELECT MAX(temperature)FROM table” to find out
the highest temperature of a dataset without writing a single line of code. Therefore, we also extend Hive to directly support the use of NetCDF data and provide transparent support to scientific users who wish to use queries to process big data.

Every query being submitted by users would be transferred
into an execution plan by Hive planner, which represents a set
of map and reduce tasks that need to be executed in a specific
order. The plan consists of multiple nodes which are connected
by directed edges. Each node represents a map or reduce task
which is responsible to execute a specific Hive Operator on the
input data. Hive has a set of operators to be executed on the
input data, such as filter, group by, join, etc. Hive driver
receives this plan and submits map and reduce tasks to Hadoop.
These tasks use two important sets of classes in order to process
data, InputFormat and SerDe. InputFormat is responsible for
reading data and passing key-value pairs to the map function.
SerDe stands for SerializerDeserializer, which transforms the
output of RecordReader into a column oriented format which
the Hive operators can use for processing. Each map task uses
InputFormat to retrieve the input, uses the corresponding SerDe
to transform the data, and then executes the specified operator
on the data. Therefore, to enable Hive to handle NetCDF data
stored on HDFS, we need to create a new SerDe for NetCDF.

This NetCDFSerDe needs to convert every variable value
from the multi-dimensional array stored in NetCDF into a row
for Hive, so that users can query based on the different
dimensions of the value, e.g., temperature, latitude, longitude,
and time for data in a 3-dimensional array. However, as
mentioned earlier, our NetCDFRecordReader produces a bulk
of values at a time for better performance. To support this
optimization, we change the architecture of map tasks so that
each map task is able to use NetCDFRecordReader to retrieve
a bulk of values in one shot and invoke NetCDFSerDe to

transform all these values into rows of the table for the Hive
operators to process. Consequently, the performance of Hive
queries can also be much improved when processing NetCDF
data.

IV. EVALUATION
A. Setup

The experimental evaluation was done on a cluster of nine
nodes, each with two six-core 2.4 GHz AMD Opteron CPUs,
32GB of RAM, and two 500GB 7.2K RPM SAS disks,
interconnected by a Gigabit Ethernet switch. All the nodes run
the Debian 4.3.5-4 Linux with the 3.2.20-amd64 kernel and use
EXT3 as the local file system. The evaluation uses Hadoop
2.5.2 and Apache Hive 1.2.0. One node serves as the
NameNode and the others as DataNodes. HDFS block size is
defaulted to 128MB, and replication level is three. Each
Hadoop map task’s resource usage is set to 1 CPU core and
1024 MB memory.

We compare the performance of our approach to the
traditional CSV-based approach which converts the NetCDF
data to CSV format before storing and processing the data using
Hadoop. The dataset represents typical geoscience data which
contains a set of temperatures of certain locations (latitude and
longitude) at certain times. We consider four commonly used
queries as the benchmarks, which are listed in Table 1. Query
1, 2, and 3 gets the average, maximum, and sum of the entire
dataset, respectively. Query 4 gets the sum of a subset of the
data.
B. Query Performance

The first set of experiments compare the query execution
time of our proposed approach (Proposed) to the traditional
CSV-based approach (CSV). We consider all the four different
queries for processing a NetCDF dataset of different sizes, from
2GB to 100GB. Note that in the CSV approach, the NetCDF
data need to be converted into CSV format first. In these
experiments, we assume the data are already converted and
loaded into HDFS. We will evaluate the overhead of data
conversion and loading in next subsections.

Figure 2 shows the performance comparison for Query 1.
The results show that our approach is faster than the CSV
approach by 265% for 2GB input, 402% for 20GB input, 906%
for 50GB input, and 983% for 100GB input. Similarly, our
approach also substantially outperforms the CSV approach for
the other queries, by up to 12-fold, as shown in Figures 2, 3,
and 4. We attribute this significant improvement to two factors:
first, the CSV approach greatly increases the size of data which

 SQL Query
Query 1 SELECT AVG(val) FROM TABLE
Query 2 SELECT MAX(val) FROM TABLE
Query 3 SELECT SUM(val) FROM TABLE
Query 4 SELECT SUM(val)FROM TABLE WHERE lat > 50.0

Table 1. Benchmark queries

1920

requires more I/Os and more map tasks to process, both
increasing the time required for executing a query; second, the
optimization that we made to process records in batch in both
Hadoop and Hive also makes our approach much more efficient
than the traditional approach. In comparison, in the CSV
approach, Hive processes only one line of the CSV data at a
time.
C. Conversion from NetCDF to CSV

Another significant source of overhead of the CSV
approach is the time required to convert the NetCDF data into
the CSV format. Figure 5 shows the time that it takes to convert
NetCDF data with different sizes into CSV file format, which
is about 9 minutes, 86 minutes, 4 hours, and 7 hours for 2 GB,
20 GB, 50 GB, and 100 GB respectively. In all three cases the
conversion time is even more than the query execution time.
D. Importing Data into HDFS

Larger dataset requires longer time when imported into
HDFS. Figure 6 compares the time required to import the
NetCDF data and the converted CSV data into HDFS. By
importing the raw NetCDF file into the HDFS instead of using
CSV, we are able to reduce the copy time extensively, by over
80% for the different input sizes.
E. Total Processing

Putting everything together, the end to end time to process
a NetCDF dataset is the sum of the conversion time (only for
the CSV approach), the importing time, and the query
execution time:
Total Processing Time = Conversion Time + Importing Time

 + Execution Time
Figure 8 compares the total processing time for Query 2 in our
approach and the CSV approach with different input sizes.
Overall, our approach is faster than the CSV approach by
817.99%, 1598.31%, 2001.23%, and 2042.28% for the NetCDF
data of 2GB, 20GB, 50GB and 100GB, respectively. It also
achieves the same level of improvement for the other queries.
F. Space Overhead

Storage space consumption on the big-data system is
another aspect to compare these two different approaches.
Because our proposed approach works directly on the raw
NetCDF data, it does not incur any space overhead. In contrast,
the CSV approach requires about 524.9% more space after
converting NetCDF data to CSV format, e.g., 2GB NetCDF file
consumes around 12GB space after conversion. Therefore, our
approach also saves space usage substantially. Because data
need to be replicated at least three times on HDFS for
reliability, the CSV approach would quickly run out of space
for larger datasets which in comparison can still be supported
by our approach.

 Figure 2. Runtime of Query 1

 Figure 3. Runtime of Query 2

 Figure 4. Runtime of Query 3

 Figure 5. Runtime of Query 4

 0

 2000

 4000

 6000

 8000

 10000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

Proposed

95.
298 266

.91
4

376
.24

4

861
.42

6

CSV

347
.75

3 134
0.7

46

341
8.3

68

846
4.0

37

 0

 2000

 4000

 6000

 8000

 10000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

Proposed

82.
965 260

.44
1

435
.66

6

803
.82

8
CSV

335
.75

8 140
8.5

9

336
9.4

82

799
5.9

14

 0

 2000

 4000

 6000

 8000

 10000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

Proposed

78.
21 279

.15
1

367
.14

6

812
.7

CSV

335
.75

8 139
0.4

8

477
6.3

91

816
9.9

81

 0

 2000

 4000

 6000

 8000

 10000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

Proposed

100
.54

7

284
.48

3

388
.33

8

885
.40

3

CSV

398
.82

8

206
1.8

94 337
4.1

96

877
2.2

08

1921

V. CONCLUSIONS AND FUTURE WORK
This paper presents an approach to enabling big-data

systems to support the storage and processing of scientific data.
It bridges an important gap between the self-describing data
commonly used by scientists for data distribution and sharing
and the big-data systems which are increasingly important to
scientific productivity. Based on this approach, we have
extended two important and widely used big-data systems,

Hadoop and Hive, to support scientific data. Users can write
MapReduce programs using convenient new APIs to process
NetCDF data stored HDFS. They can also use the extended
Hive to transparently process NetCDF data using standard
queries. Our experiment results obtained from typical queries
on a geoscience dataset show that this new approach
substantially outperforms the traditional CSV-based approach.

While in this paper we focused on enabling Hadoop and
Hive to support scientific data, our approach is also applicable
to other emerging big-data systems such as Spark [15]. Based
on our current results, we believe that it requires only similar
extensions in Spark to support the storage and processing of
scientific data stored on HDFS, which will be considered in our
future work. In addition, we will also consider the support for
the latest self-describing formats such as NetCDF4 and HDF5.
Although our approach is also applicable to these new formats,
the implementation may be more involved and require
additional implementation efforts due to the more complex
internal structure of these formats. Finally, we will study data
formats optimized for big-data processing (e.g., Orc [8] and
Parquet [9]) and explore the possibility of improving scientific
data formats such as NetCDF and HDF for big-data systems.

VI. ACKNOWLEDGEMENT
This research is sponsored by the National Science

Foundation CAREER award CNS-1253944, the Department of
Defense award W911NF-13-1-0157, and a gift from VMware
Inc. S. Zhou is supported by NASA AIST 14 project.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” In Proceedings of the 6th conference on Symposium on Operating Systems Design & Implementation – Volume 6, OSDI’04, page 10, Berkeley, CA, USA, 2004.
[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” In ACM SIGOPS Operating Systems Review, 2003, vol. 37, pp. 29–43.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,” in IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010.
[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber, “Bigtable: A Distributed Storage System for Structured Data,” In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation – Volume 7, OSDI’06, pages 15–15, Berkeley, CA, USA, 2006.
[5] HBase. http://hbase.apache.org.
[6] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy, “Hive: a Warehousing Solution over a Map-Reduce Framework,” In Proceedings of VLDB Endow. 2, 2 (August 2009), 1626-1629.
[7] R. Rew and G. Davis, “The Unidata netCDF: Software for Scientific Data Access, ” Sixth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, Anaheim, CA, February 1990.
[8] Introduction to HDF5, https://www.hdfgroup.org/HDF5/doc/H5.intro.html
[9] ORC Files. https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

 Figure 6. Conversion Time

 Figure 7. Copy Time

 Figure 8. Total Processing Time for Query 2

 0

 5000

 10000

 15000

 20000

 25000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

ConversionTime

517

5160

13792

25800

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2GB 20GB 50GB 100GB

Tim
e (

s)

NetCDF File Size

Proposed

23 241

602
.5 120

5

CSV

120

144
6

361
5

723
0

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

Prpos
ed-2

G

Propo
sed

-20G

Propo
sed

-50G

Propo
sed

-100
G

CSV-2G
CSV-20G

CSV-50G

CSV-100
G

Tim
e (

s)

Approach-File Size

ExecuteCopyConvert

1922

[10] Apache Parquet: https://parquet.apache.org
[11] Joe B. Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos Maltzahn, Neoklis Polyzotis, and Scott Brandt, “SciHadoop: Array-Based Query Processing in Hadoop”, In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). ACM, New York, NY, USA, Article 66 , 11 pages.
[12] Apache Parquet, https://parquet.apache.org/

[13] Earth System Grid, https://www.earthsystemgrid.org/about/overview.htm
[14] NetCDF Utilities, https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/NetCDF-Utilities.html#NetCDF-Utilities
[15] Apache Spark, http://spark.apache.org/

1923

