
Optimizing Apache Nutch For Domain Specific
Crawling at Large Scale

Luis A. Lopez1, Ruth Duerr2, Siri Jodha Singh Khalsa3

NSIDC1,  The Ronin Institute2, University of Colorado Boulder 3

Boulder, Colorado.
luis.lopez@nsidc.org

Abstract— Focused crawls are key to acquiring data at large
scale  in  order  to  implement  systems  like  domain  search
engines and knowledge databases. Focused crawls introduce
non trivial problems to the already difficult problem of web
scale  crawling;  To address  some of  these issues,  BCube -  a
building  block  of  the  National  Science  Foundation’s
EarthCube  program  -  has  developed  a  tailored  version  of
Apache Nutch for data and web services discovery at scale.
We describe how we started with a vanilla version of Apache
Nutch and how we optimized and scaled it to reach gigabytes
of  discovered links  and  almost  half  a  billion  documents  of
interest crawled so far.

Keywords:   focused  crawl,  big  data,  Apache  Nutch,  data
discovery

I. INTRODUCTION

  Once a problem becomes too large for vertical scaling to work
scaling horizontally is required. This is why Apache Nutch and
Hadoop were designed[10]. Hadoop abstracts most of the perils of
implementing  a  distributed,  fault  tolerant  file  system,  uses
MapReduce as its data processing algorithm and has become a
defacto standard for big data processing. Hadoop has advantages
and limitations, it scales well and has a solid user base, however a
plethora of configuration properties need to be tuned in order to
achieve a performant cluster[8].

However, having a performant cluster is not enough, optimizing
the crawl and speeding up fetch times within the range of polite
crawl delays given by the remote servers is also required. At that
point, other problems appear - slow servers, malformed content,
poor standard implementations, dark data, semantic equivalence
issues and very sparse data distribution.  

Each challenge requires a different mitigation technique and some
can only be addressed by the site’s owners. For example, if a slow
server has relevant information all we ethically can do to fix is to
contact  the  organization  to  let  them  know  they  have  a
performance issue.  This is also the case for malformed content
and  poor  standard  implementations  like  wrong mime type  and
dates given by the servers. In BCube we ran into most of these
problems  and  we  attempted  to  improve  the  crawl  by  tackling
those that are under our control.

The role of BCube as part of the NSF funded project EarthCube is
to  discover  and  integrate  scientific  data  sets,  web services  and
information to build a “google for scientific data”, for this reason
a simple web crawler was not enough and a focused crawler had
to be developed. The crawler is a core component of BCube but
not the only one, at the moment our stack is also using semantic
technologies  to  extract  valuable  metadata  from  the  discovered
data.

Several academic papers have been written about Hadoop cluster
optimization  and  advanced  techniques  for  focused  crawling
however the purpose of this paper is to describe how Nutch can be
used as a domain specific (topical crawler) discovery tool and our
results so far in using it at scale.  First, we describe the issues we
ran into while doing focused crawls and what a user gets from a
vanilla Nutch cluster. Second, we talk about customization made
to maximize cluster utilization and lastly, we discuss the improved
performance and future work for this project.

II. RELATED WORK

  Previous work on this topic has focused on the use of supervised
and  semi-supervised  machine  learning  techniques  to  improve
relevant document retrieval [1][2][11], but there is little literature
on how these techniques perform at scale and in most cases the
core component of the research is a custom made crawler that is
only tested in  a  few hundred pages [3][7][11].  This  is  not  just
inconclusive but also hides problems that focused crawlers will
run into at large scale [6].

Some open source projects can and have been used to perform
focused crawls  as well,  Scrapy Frontera,  Heritrix and Bixo are
among the most mature and they all  support extensions.  Sadly,
none of these frameworks have been used extensively in domain
specific  crawls  at  scale  with  publicly  available  results.  Future
work would necessarily include porting the code used in BCube to
these  frameworks  and  benchmark  the  results  using  similar
hardware.

Current efforts like JPL’s MEMEX use Nutch and other Apache
components to crawl the deep web and extract metadata on more
specialized content[13]. As MEMEX and other projects evolve it
will be interesting to compare their findings and performance once
that  the  size  of  the  search  space  grows  to  cover  a  significant
portion of the Internet.

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1906 



III. FOCUSED CRAWLS. 
    
3 .1. Challenges

  A focused crawl could be oversimplified as a Depth-First Search
(DFS) algorithm with the added complexity that we operate in an
undirected graph with billions of edges. Our work then is to figure
out how to get the most documents of interest possible visiting the
minimum number of nodes(web pages). This is critical because
the  Internet  is  large  and  computational  resources  are  usually
limited by time and costs. 

Precisely because of the intractable Internet size, Google came up
with Page Rank[4] so links can be crawled in an ordered manner
based  on  their  relevance.  The  relevance  algorithm  used  in
PageRank is very similar to the one used by Nutch’s Scoring Opic
Filter. This type of algorithm prioritizes popular documents and
sites  that  are  well  connected.  This  approach  is  good  for  the
average  end  user  but  not  really  suitable  for  domain  specific
searches. This can be seen in figures 3.1 and 3.2.

Fig. 3.1 PageRank 

Fig. 3.2 Focused Crawl

Note  that  in  PageRank-like  algorithms  the  nodes  with  more
inlinks  are  visited  first  and  this  is  not  optimal  for  potentially
diffuse,  sparse,  not  very  popular  but  relevant  information.
BCube’s approach to scoring is not complicated, we used a semi
supervised  relevance  filter  where  relevant  documents  were
manually tagged and then tokenized so we can compare 2 things,
content and urls path components.

BCube’s  scoring  filter  currently  uses  only  content  and  in  the
future  we  plan  to  use  the  context  path  on  which  a  relevant
document  is  located  and  semantic  techniques  to  improve  and
adapt the relevance based on user interaction[14].

As we stated before, the focus will be on how a focused crawler
performs independently from the scoring algorithm. Let’s assume
that we have a good scoring algorithm in place and we are about
to crawl the .edu search space. Our intuition says that we’ll index
more relevant  documents  as  time passes,  we’ll  find a  gaussian
distribution of these documents in our search space and that the
performance will be predictable based on the input size. We will
probably be wrong. As we scaled in BCube to cover millions of
URLs we ran into 3 issues with our focused crawls. 

3.1.1 Falling into the Tar Pit

We use the term ‘tar pit’ to describe a host that contains many
relevant documents, in our case these were data granules and web
services (or data repositories).  For these sites our scoring filter
acts  as  expected  and  boosts  the  urls  where  there  relevant
documents were found. If the size of this ‘tar pit’ was big enough
our crawler behaved not like a finder but like a harvester. We were
indexing thousands of  relevant  documents from the same hosts
and this left other interesting sites unexplored as we spent more
time ‘harvesting’ the tar pits. This is better shown in figure 3.3, as
our crawling frontier expands all the relevant documents in blue
will have a higher priority if we discover them earlier.  

Fig. 3.3 A tar pit in blue. Other relevant documents on top.

To mitigate this we configured Nutch to only explore a limited
number of documents from the same origin even if all of them are
relevant.  This  allowed  us  to  discover  more  diverse  data  and
improve cluster performance as we were not crawling a limited
number of high scored hosts. Crawling a limited number of hosts
is however, an almost unavoidable scenario in focused crawls, this
behavior led to our second problem, performance degradation.

1907 



3.1.2 Performance degradation

In focused crawls the number of hosts over time should decrease
as we only explore paths that are relevant,  causing our cluster
performance to also decrease over time. This degradation follows
a  exponential  decay  pattern[18].  Figure  3.4  depicts  the  crawl
performance we observed. 

Fig. 3.4 Documents Indexed per second as the crawl frontier expands. The
2 models represent slightly different decay constants[18]. 

The reason for this exponential decay is driven by 3 factors, seed
quality, crawling politeness and scoring effectiveness. If we use
good URL seeds [9] we’ll reduce our search space early and if we
crawl  politely  we’ll  have  to  obey  Robots.txt  causing  the
underutilization of the cluster. This decay has been also found by
other research [17][5].  In BCube we tried to overcome this issue
by spawning separate clusters to handle specific use cases, scaling
out  or  reducing  the  resources  as  needed.  Thanks  to  Amazon’s
EMR this  task was simplified,  the only extra  effort  made was
scripting the glue code to keep track of all the clusters running. In
our  case  most  of  the  servers  had  crawler-friendly  Robots.txt
values but some had Crawl-Delay values of up to 1 day for each
request.  Having  multiple  crawls  working  at  different  speeds
allowed us to maximize our resources and avoid this problem.

3.1.3 Duplication

Every search engine has to deal with duplication problems, how
to identify and delete duplicated content is a process that normally
happens  when  we  have  all  the  documents  indexed  as  a  post
processing step. At web scale however, we cannot afford to index
completely  similar  repositories  from  different  hosts  and
deduplicate later.  Also there are different  kinds of equivalence,
clones, versions, copies and semantically similar documents. 

A curious case happened when our filter boosted similar relevant
documents.  We  were  crawling  a  repeated  number  of  times
indexing the same documents over and over.  This was because
there are sites that distribute content in different languages but the
actual  content  doesn’t  change  that  much,  given  that  we  are
looking for scientific data.

For example, after finding the domain cimate-data.org our crawler
proceeded to boost the score for their documents and after a little
while we noticed the following numbers in our crawl database.

Table. 3.1 Documents fetched from climate-data.org
Domain Documents fetched

fr.climate-data.org 212142
bn.climate-data.org 209257 
de.climate-data.org 203279
en.climate-data.org 197716

As one can guess the documents were very similar climate reports
simply expressed in sites geared for French, German, Bengali and
English users. This is also shown in figure 3.5. 

Fig. 3.5 Similar documents in slightly different yellow colors..

Currently BCube is exploring [12][14] semantic technologies to
further characterize similar relevant documents to avoid crawling
multiple times and index what’s basically the same information. 

IV. NUTCH CUSTOMIZATIONS

4.1 Out of the box configuration
 
 Nutch  comes  with  generic  plugins  enabled  and  its  default
configuration  is  good  for  general  crawls  but  not  so  much  for
focused  crawls.  Nutch  uses  2  main  configuration  files,  nutch-
default  and  nutch-site,  the  later  used  to  override  default
configurations.  We  can  adjust  a  number  of  things  in  the
configuration files i.e. the number of documents we want to crawl
on each iteration or the number of threads to use on each mapper.
There are also Hadoop specific configuration properties that we
probably need to tune. 

Our crawling strategy required us to index the raw content of a
relevant document and there was no official plugin developed for
this.  We  also  had  to  index  documents  based  on  the  mime
type(once that they pass all the filters) and Nutch didn’t have this
plugin until recent weeks.

1908 



4.1 BCube tuning and performance

After replacing the scoring filter and putting our extra plugins in
place we had to maximize fetching speeds. The properties to do
this  are  grouped  in  the  “fetcher”  section  of  the  nutch-default
configuration file.  Something to take into account beforehand is
the number of CPUs available to each Hadoop mapper, and this
was used for our baseline calculation. Since document fetching is
not a CPU bounded task we can play with the values to manage
the workload distribution. i.e. If we have a 16 node cluster and we
want to crawl 160,000 urls at the time then each mapper can get
up to 10,000 urls. Given that we generate only 1,000 documents
per host and all our hosts have more than 1,000 documents then
we’ll have 10 queues. 

There is another important property to configure, the number of
threads that can access the same queue. This value can improve
the speeds dramatically depending on how we group our URLs.
Going back to our previous case,  with 10 queues per host and
configuring 2 threads per host then having more than 20 threads
per mapping will be wasteful as the maximum number of working
threads would be given by (queues * fetcher.threads.per.queue). 

Nutch  properties  can  be  used  to  dynamically  target  a  specific
bandwidth. In our experiments these properties were less effective
than doing the calculation of current domains and active queues.
Once that we had the maximum number of working threads, we
capped the fetching times to 45 minutes.  This was because we
noticed that the cluster crawled more than 90% of their queues in
30 minutes or less(see fig. 4.1) but lasted up to 2 hours to finish in
some  cases.  The  actual  cause  was  that  some  queues  had  high
Crawl-Delay values and the cluster  waited until  all  the  queues
were empty. 

Fig. 4.1 Fetching time on 250k documents and 4223 queues.

A key difference between our focused crawls and a normal crawl
lies  on what  we keep from them.  Normal  crawls  index all  the
documents found but we don’t. This saves HDFS space (we only
keep the crawldb and linkdb) and deletes the content of all the
documents after the ones we consider relevant are indexed. The
result is savings above  99% of the total HDFS file system.  

Some operations in Nutch are performed on the current segment
on which we are operating; a segment is the list  of  urls  being
fetched,  parsed  and  integrated  to  our  crawl  database.  Other
operations  are  carried  out  on  the  entire  crawl  database.  We
improved our performance by only applying some filters in the
parsing stage and pruning the URLs that we considered totally off
topic or had very low scores. This was important because even if
we only explore the high scoring nodes MapReduce will process
the total number of URLs in our DB in operations like scoring
propagation.  This  is  similar  to  what  happens  with  Search
algorithms like A* with Alpha/Beta pruning[19]. 

The  following  properties  were  the  ones  that  had  the  biggest
impact  on  the  performance  of  individual  clusters.  We  applied
filters  once,  we  reduced  the  minimum  waiting  time  for  each
request, we only generated 1000 urls using the highest scores for
each host and finally we set a limit for the fetching stage to 45
minutes. 

Table 4.1 Configuration changes for a 16-nodes cluster.
Property Default Value BCube Value
crawldb.url.filters True False
db.update.max.inlinks 1000 100
db.injector.overwrite False True
generate.max.count -1 1000
fetcher.server.delay 10 2
fetcher.threads.fetch 10 128
fetcher.threads.per.queue 1 2
fetcher.timelimit.mins -1 45

Finally, after several tests we show the typical behavior of one of
our crawls against what we got from a vanilla version of Nutch.
This  test  was  carried  out  using  16-node  clusters  on  Amazon’s
EMR.

Fig. 4.2 Relevant documents indexed per iteration in a vanilla Nutch
cluster and a BCube cluster.

As we can see the gains are noticeable,  we could theoretically
match our performance by doing a  bigger cluster and indexing
more  documents  using  vanilla  Nutch  versions  but  this  will  be
expensive and not efficient.

1909 



Figure 4.2 summarizes the content of our crawl database after 2
weeks of continuous crawling.

Table 4.2 Configuration changes for a medium size cluster.
Status Number

redir_temp 670,937
redir_perm 826,173
notmodified 603,808
duplicate 958,431
unfetched 565,990,788
gone 65,527
fetched 408,368,666

From the total number of fetched documents only 614,724 were 
relevant enough to be indexed.  That is only 0.0015% of the total 
documents retrieved. 

A note on costs.  The total cost over this two week crawl was less 
than $500 USD on the Amazon cloud.  Obviously, this is 
considerably less expensive than buying hardware and attempting 
on an in-house cluster. We also used spot instances to decrease the
costs. 

V. CONCLUSIONS

Based on the empirical results we had after optimizing Nutch for
focused crawling we have learned that there are major issues that
can only be reproduced at large scale and they only get worse as
the  search  space  gets  bigger.  Among  the  two  most  difficult
problems we ran into we mention performance degradation due
sparse data distribution and duplicated content in the Web. 

We  also  learned  that  some  issues  cannot  be  addressed  by
improving the focused crawl alone and there are problems out of
our  control  that  probably  won’t  be  solved  by  crawl  processes
themselves.  Problems  like  prohibitive  values  for  crawlers  in
robots.txt,  poor  performance  in  remote  hosts,  incorrect
implementation of web standards, bad metadata and semantically
similar content.

Despite  the  complexity  of  the  overall  problem  we  introduced
different mitigation techniques to tackle some of the issues with
good results. Search space pruning using manually tagged relevant
documents, optimized configuration values for improving fetching
times and the “discover and move on” approach for relevant data
were the ones that proved to be the most effective.

Future work will be focused on optimizing the scoring algorithms
and introducing graph context[1][11] and semantic information to
make  the  crawl  more  adaptable  and  responsive  to  sparse  data
distribution. We also want to develop data type specific responses
so that we both maximize the data set and data service information
captured  without  crawling  large  amounts  of  very  similar
information.

BCube is committed to sharing all findings with the community
and all the work presented here is the result of open sourced code
available at http://github.com/b-cube. Our Nutch crawldb set with
+100  Million  URLs  that  might  be  useful  to  other  research  is
publicly available in AWS S3 (200.62GB with more than 6761
unique domains)[15][16]. 

REFERENCES

[1] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, Lee C. Giles,
Marco Gori. Focused Crawling using Context Graphs
26th International Conference on Very Large Databases, VLDB 2000   pp.
527-534, September 2000.
[2]  O. Etzioni, M. Cafarella, D. Downey, et al. Web-scale information
extraction in KnowItAll.  2004.
[3] John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, Athanasios
Tsakalidis. Web Service Discovery Mechanisms: Looking for a Needle in
a  Haystack?  Journal  of  Web  Engineering,  Rinton  Press,  5(3):265-290,
2006.
[4] Page, L., Brin, S., Motwani, R., Winograd, T. The Pagerank Citation
Algorithm: Bringing Order to the Web. Technical Report, Stanford Digital
Library Technologies, 1998.
[5]  Yang Sun, Ziming Zhuang, and C. Lee Giles. A Large-Scale Study of
Robots.txt. The Pennsylvania State University, ACM 2007.        
[6]  Wei Xu, Ling Huang, Armando Fox, David A. Patterson and Michael
Jordan. Detecting Large-Scale System Problems by Mining Console Logs.
University  of  California,  Berkeley  Technical  Report  No.  UCB/EECS-
2009-103 July 21, 2009.
[7]  Li, Wenwen , Yang, Chaowei and Yang, Chongjun(2010) 'An active
crawler  for  discovering  geospatial.  Web services  and  their  distribution
pattern  -  A  case  study  of  OGC  Web  Map  Service',  International
Geographical Information Science, 24: 8, 1127 — 1147
[8]  Huang, Shengsheng, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
"The  HiBench  Benchmark  Suite:  Characterization  of  the  MapReduce-
based Data Analysis." 2010 IEEE 26th International Conference on Data
Engineering Workshops ICDEW 2010.
[9] Hati, Debashis,  and Amritesh Kumar. "An Approach for Identifying
URLs Based  on  Division  Score  and  Link  Score  in  Focused  Crawler."
International Journal of Computer Applications IJCA 2.3 (2010): 48-53.
[10] Cafarella,  Mike,  and  Doug Cutting.  "Building  Nutch."  Queue 2.2
(2004): 54. Web.
[11] Liu,  Lu,  and  Tao  Peng.  "Clustering-based  Topical  Web  Crawling
Using CFu-tree Guided by Link-context." Frontiers of Computer Science
Front. Comput. Sci. 8.4 (2014): 581-95.
[12] Isaacson, Joe. The Science of Crawl (Part 1): Deduplication of Web
Content.2014 http://blog.urx.com/urx-blog/2014/9/4/the-science-of-crawl-
part-1-deduplication-of-web-content web.
[13] White, Chris, Mattmann, Chris. "Memex (Domain-Specific Search)."
Memex. DARPA, Feb. 2014. Web. 
http://www.darpa.mil/program/memex
[14] Lopez, L. A.; Khalsa, S. J. S.; Duerr, R.; Tayachow, A.; Mingo, E.
The  BCube  Crawler:  Web  Scale  Data  and  Service  Discovery  for
EarthCube.  American  Geophysical  Union,  Fall  Meeting  2014,  abstract
#IN51C-06
[15] Nutch Logs are stored in: s3://bcube-nutch-test/logs and crawl data:
https://s3-us-west-2.amazonaws.com/bcube-crawl/big-crawl-clean-100m
[16] Nutch JIRA Tickets: 
https://issues.apache.org/jira/browse/NUTCH-2044
https://issues.apache.org/jira/browse/NUTCH-2032 
https://issues.apache.org/jira/browse/NUTCH-2033
https://issues.apache.org/jira/browse/NUTCH-2034
https://issues.apache.org/jira/browse/NUTCH-2035 
https://issues.apache.org/jira/browse/NUTCH-2046 
[17] Krugler,  Ken.  Performance  problems  with  vertical/focused  web
crawling 2009 Web. http://ken-blog.krugler.org/2009/05/19
[18] Truslove, I.; Duerr, R. E.; Wilcox, H.; Savoie, M.; Lopez, L.; Brandt,
M.   Crawling  The  Web  for  Libre.  American  Geophysical  Union,  Fall
Meeting 2012, abstract #IN11D-1482
[19] Alpha-Beta Pruning Algorithm, Wikipedia.
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

1910 




