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Abstract—Applications utilizing many types of location data,
such as traffic congestion estimation and facility management
using indoor pedestrian tracks, have been rapidly increasing.
Such applications require the integration of various locational
data from different data sources to produce more values. Efforts
to ensure smoother data exchange are required for promoting the
use of such applications because handling and integrating location
data will enlarge the market for geo-spatial information. In
response to this need, we had proposed a data encoding standard
called ‘OGC R© Moving Features’ to contribute to smoother data
exchange, and it was adopted as an international standard on Feb.
2015. We demonstrate in this work that OGC R© Moving Features
is an effective tool to advance technologies for applications using
many types of location data, with referring “4Vs” to represent
the most pressing bigdata issues.

I. INTRODUCTION

The location data of a mobile object is a typical type of
big data handled by a geospatial information system (GIS).
Large amounts of location data are produced by positioning
systems such as the GPS (Global Positioning System). Not
only that, the quantity of the location data being produced
is rapidly increasing day by day. A representative examples
is the widespread use of personal cellar phones. Most people
these days have cell phones that connect to the Internet by
communicating with wireless bases. The records of such com-
munication, known as call detail records (CDRs), are available
for determining the locations of the cell phones. Moreover,
many kinds of devices have function as actual GPS receivers,
such as vehicle navigation systems and automatic identification
systems (AISs) of maritime and aviations vessels. Additionally,
cameras and radar systems track moving objects, and the
resulting trajectories are also location data. Accordingly, a
huge amount of location data (called “locational bigdata”
hereafter) is being produced and stored.

Therefore, the demand for handling locational bigdata is
very rapidly increasing. There are numerous applications using
locational bigdata that are being considered and implemented,
including traffic congestion information services using probe
cars equipped with GPS, the tracking of automatic trucks for
logistics management, and agent-based road traffic simulation
systems for forecasting traffic situations. Moreover, the growth

of smartphones in the market has created an enormous mar-
ket for geospatial applications that require the integration of
locational bigdata from many heterogeneous data sources.

Technologies to address the issues involved in handling
locational bigdata are thus surely needed. First, we need to
ask oursevels, what exactly are the issues? We can use ‘4Vs’
to represent the most pressing bigdata issues: volume, variety,
velocity, and value. How exactly are these issues at play when
it comes to locational bigdata? It is not clear.

In response to the above, we have proposed a new in-
ternational standard “OGC R© Moving Features” to the inter-
national standardization organization Open Geospatial Con-
sortium (OGC) [1]. The OGC R© Moving Features provides
encoding rules of trajectories, so it is applicable for locational
bigdata. In this paper, we summarize how the OGC R© Moving
Features standard contributes to solving the “4Vs” problems.
Also, because the “velocity” issue is not solvable with only
OGC R© Moving Features, a combination with the MQTT
protocol is proposed. In this paper, we clarify which issues
have been resolved and which still need to be addressed. This
will be of benefit to the researchers working on developments
in the field.

II. RELATED WORKS

”Trajectory analysis”, which is a technology to extract
information from stored trajectory data, is a representative
technology for locational bigdata. Many types of trajectory
analyses exist, such as trajectory smoothing [2] [3] for reducing
errors in positioning, trajectory clustering [4] [5] [6] for
retrieving similar trajectories from a database, an algorithm
for labeling positioning data [7], and the extraction of a
“representative path”, which is abstract information about a
trajectory dataset [8] [9].

Movement prediction is an important useage of trajectory
analysis. Statistical models used for the prediction describe
a probability formula that expresses the transitions between
positions. Various Markov-chain models [10]–[13] have been
used to improve prediction accuracy.

Another application is density estimation of moving objects
suce as pedestrians. The density of pedestrians in a shopping
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Fig. 1. Tsunami simulation integrated with evacuation simulator. Yellow
circles represent locations of evaluating people, and red circles represent
victims of the tsunami.

mall, for example, is understood as the degree of crowdedness
at each shop. Kernel-density estimators [14], [15] are popular
methods for estimating the density of points.

As shown above, many technologies have already been de-
veloped. However, these technologies require various functions
to handle locational bigdata, namely, a common data encoding
format, spatio-temporal database platforms, a data collection
infrastructure and so on. Sometimes such basic technology
is absent, and for promoting focusthe development of such
technologies, the basis should be prepared. Thus, the basis
using international standards is our in this paper.

III. “VALUE”: WHY LOCATIONAL BIGDATA

As stated in the previous section, many applications for
locational bigdata are being considered and implemented. For
such applications, it makes more sence from a business value
standpoint to combine the locational bigdata with another
geospatial data. For example, the location data of an object
exhibits only the location itself, but by combining it with
another piece of geospatial data, we can ge a more detailed
idea of the situation around the object. Many vehicles stopped
on a road, for example, suggests that there may have been a
traffic accident on the road. Thus, systems using single-source
location data will evolve into more integrated systems. The
following are examples of such efforts.

1) Integrated simulation for disaster risk management:
Different simulation systems such as people evacuation simu-
lations, road vehicle simulations including emergency vehicles,
and tsunami simulations, should be integrated. Figure 1 shows
an example of a tsunami simulation and a people evacuation
simulation integrated on a GIS platform. Many of these
systems (excepting the tsunami simulations) are agent-based
simulation systems that output locational bigdata describing
an individual agent’s tracks.

2) Security services: Security management officers such as
police officers need services to estimate criminal risk. This ser-
vice requires sharing of situational information as a common

picture by integrating and visualizing data on pedestrian and
vehicle movements collected from heterogeneous sensors such
as surveillance cameras, GPSs, and mobile phones.

3) Meteorology: Tracks of harricanes and typhoons are
stored into spatio-temporal databases. Using datamining algo-
rithms, their courses are predicted. The tracks can produce
other informative estimation with integration to other data.
For example, the number of people afftected by typhoons are
estimated with integrating population distribution.

4) Traffic information services: Traffic congestion and the
trafficability of roads can be estimated from real-time vehicle
trajectory data collected from vehicles. The information is
provided as guidance information to road users and maintainers
of roads. The data sources are diverse, coming from a fleet of
taxis with GPS, trucks, buses, and navigation system users.
It is threfore more necessary to integrate data encoded in
different ways. In one real-life example, the trajectory data
from car navigation devices were integrated to determine the
trafficability of road segments after the Great Earthquake of
East Japan in 2011 [16].

5) Navigation for Robots: Control technologies for various
robots and autonomous vehicles have recently been rapidly
improved. These robots have to move around while avoiding
collision with other objects. Location data of the robots and
the people around them are collected, making this data a
form of locational bigdata. Since robots can identify only
nearby obstacles and moving objects with laser range and
vision sensors, they may require situational information on a
larger scale, and this requires integration of the trajectory data
collected through sensor networks.

6) Maritime vessels: Positioning devices are installed on
maritime vessels to ensure the safety and security within
governmental maritime sectors. Some of these devices are
mandatorily requested by regional and international standard-
ization initiatives (e.g. EU Directives). For the maritime use
cases, the following information has to be included at least:

1) ship position provided by different data sources (e.g.
AIS)

2) voyages that describe the tracks of vessels

Additional information about the vessel incidents and the ship
particulars is considered complementary.

7) Aviation: Many tracks of aircraft and other airborne
vessels are used by governmental aviation sectors. The main
sources of such data are surveillance radar measuring position
and heading of the aricraft. In addition, an active response from
the aircraft transponders supplies additional information such
as its identity. Several data-encoding standards for thisntype
of data have been established, but they are applicable for only
aviations.

8) Indoor tracks: Laser imaging detection and Ranging
(LiDAR) is a technique useful for detecting and tracking pedes-
trians [17], [18]. Pedestrian-tracking systems using LiDAR
are often used to investigate the tendencies of pedestrians
movement in big facilities such as shopping malls and train ter-
minals. Such trajectory data are recorded on a spatio-temporal
database and the population distribution of the pedestrian
tracks can be calculated by a trajectory analysis system. The
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TABLE I. REPRSENTATIVE POSITIONING SYSTEMS

System Indoor Type ID
support

GPS no continuous consistent
IR sensor yes cell-ID-based consistent
RSS yes continuous consistent
Camera yes continuous consistent during capturing
LiDAR yes continuous consistent during capturing

population can be calculated by counting the number of people
in each grid. From another viewpoint, the locations where
many pedestrians are likely to cluster, potentially creating
a bottleneck, can be predicted by counting the number of
pedestrians around each booth. Such clusters need to be
reduced, and the counts are useful for cluster reduction.

9) Sports: Sports fileds are another key point for locational
bigdata application. As an example, a soccer game use case
[19] is described here. Soccer coaches typically analyze past
matches to improve their tactics and prepare for the next
match and the tracks of players and the ball may produce very
helpful information for such tactics planning. During a soccer
match, 22 players and one ball are in constant movement
around the soccer field, their tracks are obtained with video
analysis and sensors such as RFIDs. The statistics of the
trajectories of the ball and players show that depends on the
tactics. For example, defensive tactics can be better understood
by analyzing the shape of the defensive players rather than
the position of each individual defender separately. On the
basis of such information, more information will be found by
extracting primitive behaviors such as ball possession, dribbles,
intercepts, and passes. Such information is useful for planning
complicated strategies such as formations.

IV. “VARIETY”: OGC R© MOVING FEATURES ENCODING

STANDARD

A. Data sources

A track consisting locational bigdata is defined as a time
series of position data. The position data consists of several
bits of information, namely, an ID (to identify the moving
object), measurement time, and measured coordinate values.
Positioning systems like GPS (Global Positioning System)
provide such position data. There are many additional kinds
of positioning systems are available for the applications men-
tioned above.

Table I lists a selection of such positioning systems.
Although GPS is the most popular, it is not suitable for
indoor use because it uses signals from satellites, so indoor
positioning systems have been developed [10]. Two of the
most famous indoor positioning systems are radio frequency
ID (RFID) tags [20], [21] and infrared (IR) sensors [22].
This type of positioning system, called the “cell-ID-based
positioning”, provides only the IDs of locations. In contrast,
positioning system like GPS give continuous coordinate values
(e.g. longitude and latitude). Generally, continuous coordinate
values include more information than discrete ones, so contin-
uous coordinate values are suitable for extracting knowledge.
Some positioning systems use radio signals but also provide
continuous coordinates by using radio signal strength (RSS)
[23] [24] [25]. Because location IDs of locations can be
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Fig. 2. Standards on spatio-temporal data. OGC R© Moving Features is a basic
standard on encoding tracks of moving objects.

converted into coordinate values, trajectory description using
coordinate values are applicable for both cases.

Video analysis and LiDAR-based systems also provide
track data. Over the last few years, several pedestrian-tracking
systems using LiDAR have been developed [17], [18], pro-
viding precise (errors less than 30 cm) pedestrian-track data.
Moreover, many video-analysis technologies [26], [27] also
extract tracks from color images captured by video camera. A
depth camera, which captures images including depth informa-
tion, is similarly applicable to the detection of moving objects
[28], and accuracy with a depth camera is higher than that with
a video camera. The tracks obtained by LiDAR and videos
can also be described with coordinate values (x, y, z). The
coordinate systems are different from longitude and latitude.
Moreover, moving objects identification is sometimes difficult
for LiDAR and videos. For example, a person captured by
LiDAR has ID to represent the parson. However, once the
person become out of the frame of the LiDAR, the ID is
changed because LiDAR does not identify who is the person.
Thus, ID of trajectory itself is needed, which is independant
of the moving object ID.

A simulation is also considered as another type of data
sources. As shown above, people or vehicles are often simu-
lated to estimate the numer of them, such as evacuation simla-
tion. Such track data produces more value with integrating
other data (e.g., tsunami simulation). Data description in a
simulation softerware is sometimes very compact (for example,
locations of people are identified by IDs of roads). However,
the data should be converted into coordinates to integrate other
data because such specific encoding is not compatible with the
other system. Therefore, trajectory description with coordinate
values is reasonable even for simulation data.

Accordingly, tracks are generally described with a series of
coordinate values. However, many kinds of coordinate systems
might be used (e.g. indoor, outdoor). Locational bigdata thus
requires a standard and flexible (i.e. able to support many
standard coordinate systems) encoding format for trajectory
data.

B. Requirements for standard and OGC R© Moving Features

One of the most well-known standard organizations, the
International Standard Organization (ISO), recommends the
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“ISO19141:2008 geographic information – Schema for mov-
ing features” [29] as an abstract data model. Although this
model provides a basic model to describe trajectory data,
the implementation schema, such as XML schema, JSON
schema, and so on, are not defined. Figure 2 summarizes
the standards related to temporally changing geospatial data.
Many standards for coverage data and sensor observation data
have already been established, and the visualization of moving
objects is already supported by popular standards such as
X3D [30] and KML [31]. However, the adopted standard for
moving features was only ISO19141:2008, which is an abstract
standard. From a practical point of view, there is a strong need
for an implementation standard that can facilitate actual data
exchange.

For this reason, we had proposed a new implementation
standard for encoding trajectory data, called “OGC R© Moving
Features”, and it was adopted by OGC in Feb. 2015 [32].
OGC R© Moving Features was developed as an implementation
specification of ISO19141:2008 with satisfying following re-
quirements:

1) “Schema for Moving Features (ISO19141, 2008)”
should be referred to as the conceptual framework.

2) A standard data model should describe the movement
of zero to three-dimensional geometric features in-
cluding changes in attitude or rotation along with the
movement.

3) The implementation specifications should be priori-
tized.

4) Unnecessary overlaps should be avoided, while popu-
lar standards should be referred to in the development
of a new specification on the moving features.

Figure 3 illustrates the data model used in OGC R© Moving
Features. The model is called the ”foliation model”, which is
inherited from ISO19141:2008. Trajectories of three moving
points (A, B and C) are shown in the figure. The horizontal axis
indicates time, and three planes represent spatial coordinates
as a temporal snapshot. Each trajectory, which connects two
temporal snapshots, has a start time and an end time. At t=0
(start of all data), A and C start moving, and B stays. Then,
at t =1, the movement of A is changed, and B starts moving.
In this case, the trajectory of A from t=0 to t=1, the trajectory
of A from t=1 to t=2, the trajectory of B from t=0 to t=1,
the trajectory of B from t=1 to t=2, and the trajectory of C
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specifications are adopted: XML style and CSV style. Both regurates encoding
of point-like trajectories.

from t=0 to t=2 are encoded. Note that the trajectory of which
speed is zero (e.g., that of B from t=0 to t=1) is recorded
nevertheless. That is, changes of state, including location,
moving velocity, and attributes, are encoded. The encoded
trajectories are ordered by time. It enable to determine the
states of all features even if only the first half of the data is
loaded.

Figure 4 shows the modularity of the OGC R© Moving
Features standard. Moving Features core XML is the most fun-
damental specification with high extensibility. OGC R© Moving
Features XML defines an XML element to encode tracks of
point-like features. Moving Features Simple CSV is another
style of encoding. This was defined to reduce data size even if
a massive amount of data is encoded. The other specifications
to support shapes of features, such as Moving Features 1D/2D
and Moving Features 3D (shown in the figure), will be defined
as extensions of Moving Features core XML in future. This
demonstrates the extensibility of Moving Features core XML
in comparison to Moving Features Simple CSV.

An example of XML data describing trajectories is shown
in Fig. 5. Moving Features core XML is defined as a GML
[33] application and definition written with XML schema is
provided. Thus general GML parsers are applicable to parsing
the Moving Features core XML data. Moreover, a new element
inheriting the Moving Features XML element can be easily
defined.

mf:LinearTrack element, inheriting gml:feature,
is generally used for tracks that can be interpolated with linear
functions. Every mf:LinearTrack describes a short part of a tra-
jectory. mfIdRef attribute of mf:LinearTrack is an iden-
tifier of a moving object which the data describes, and start
and end attributes indicate time range of the trajectory’s exis-
tance. By collecting mf:LinearTrack elements which have
common mfIdRef attribute and ordering by start attribute,
the entire track can be obtained. Furthermore, the spatial refer-
ence system is stated in mf:sTBoundedBy element, namely,
srsName attribute of gml:EnvelopeWithTimePeriod
element, defined in GML, is inherited by mf:LinearTrack.
Because GML is one of the most popular and general encoding
schema for geospatial objects, most coordinate systems thus
are supported.
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<?xml version="1.0" encoding="UTF-8"?>

<mf:MovingFeatures xmlns:mf="http://schemas.opengis.net/mf-core/1.0"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://schemas.opengis.net/mf-core/1.0 moving_features_gml_app.xsd"

gml:id="MFC_0001">

<mf:sTBoundedBy offset="sec">

<gml:EnvelopeWithTimePeriod srsName="urn:x-ogc:def:crs:EPSG:6.6:4326">

<gml:lowerCorner>0.0 0.0</gml:lowerCorner>

<gml:upperCorner>5.0 5.0</gml:upperCorner>

<gml:beginPosition>2012-01-17T12:33:41Z</gml:beginPosition>

<gml:endPosition>2012-01-17T14:00:00Z</gml:endPosition>

</gml:EnvelopeWithTimePeriod>

</mf:sTBoundedBy>

<mf:header>

<mf:VaryingAttrDefs>

<mf:attrDef>

<mf:attrDef name="state" type="xsd:integer" />

<mf:attrDef name="type" type="xsd:integer" />

</mf:attrDef>

</mf:VaryingAttrDefs>

</mf:header>

<mf:foliation>

<mf:LinearTrajectory gml:id="LT001" mfIdRef="a" start="0" end="1050">

<gml:posList>1.0 1.0 2.0 3.0</gml:posList>

<mf:Attr>1001,12</mf:Attr>

</mf:LinearTrajectory>

<mf:LinearTrajectory gml:id="LT002" mfIdRef="b" start="0" end="2400">

<gml:posList>1.0 2.0 1.0 3.0</gml:posList>

<mf:Attr>1001,2</mf:Attr>

</mf:LinearTrajectory>

<mf:LinearTrajectory gml:id="LT003" mfIdRef="a" start="1050" end="2410">

<gml:posList>2.0 3.0 1.0 1.0</gml:posList>

<mf:Attr>1002,12</mf:Attr>

</mf:LinearTrajectory>

<mf:LinearTrajectory gml:id="LT004" mfIdRef="b" start="2400" end="5000">

<gml:posList>1.0 2.0 1.0 3.0</gml:posList>

<mf:Attr>1001,2</mf:Attr>

</mf:LinearTrajectory>

<mf:LinearTrajectory gml:id="LT005" mfIdRef="a" start="2410" end="5000">

<gml:posList>2.0 3.0 1.0 1.0</gml:posList>

<mf:Attr>1001,2</mf:Attr>

</mf:LinearTrajectory>

</mf:foliation>

</mf:MovingFeatures>

Fig. 5. An example of OGC R© Moving Features XML. All elements used in this example are defined in the OGC R© Moving Features XML Core specification.

V. “VOLUME”: SIMPLE ENCODING STYLE CSV

The huge data size of locational bigdata might be an issue
for some applications. For example, imagine the tracks of
one million people in a large city being collected through
smart-phones every minute. Because one day consists of 1,440
minutes, one billion pieces data will be recorded in this
scenario. If one location data size is 1 kbyte, the data size
of one day reaches 1TB and that of several years will be 1
PB. Such a huge amount of data is difficult to handle, and
a simple encoding style to reduce data size is thus strongly
needed.

As mentioned in the previous section, OGC R© Moving
Features Simple CSV, which is a data size-friendly encoding
style, was developed for thiis purpose, that is, as a compact
data encoding. Figure 6 shows an example of data description
using Moving Features Simple CSV. A piece of data encoded
by Moving Features CSV has two main parts: a header part and
a body part. The header part, in which the line starts with ‘@’,
provides boundary and attribute definitions, and the body part,
which follows the header, is used to describe the trajectories
themselves. In the body part, every track is encoded as a line,
as ‘a,0,1050,1.0 1.0 2.0 3.0,1001,12.’ The ID of
a moving object is shown in the first column, the start time and
end time of the track follow, the shape of the track is shown

in the next, and the attributes are shown as the last columns.
The shape is expressed as a line string.

This encoding style has fewer flexibility and extensibility
than the XML style, but the data size is very small. Because
the data size of encoded Moving Features depends mainly
on the number of trajectories, the data size can be roughly
estimated using the data size of each trajectory. Namely, one
line data size of CSV text shown in Fig. 6 is around 40 bytes.
In addition, if the locations of one million people in a city
are collected through cell phones every minute, 1,440,000,000
tracks (that is, 24 hours × 60 minutes × 1,000,000 people) are
stored [34] (this setting is similar to exisisting dataset [34]).
The data size is 57.6GB in that case.

For comparison, the data size with OGC R© Moving Features
XML is estimated. OGC R© Moving Features XML encodes a
track as follows:

<mf:LinearTrajectory gml:id="a1" mfIdRef="a"

start="0" end="1050">

<gml:posList>1.0 1.0 2.0 3.0</gml:posList>

<mf:Attr>1001,2</mf:Attr>

</mf:LinearTrajectory>

The data size of this code is around 160 bytes, which is
four times of that encoded by CSV. Thus, the entire data size
is 230.4 GB. Another possible encoding style is JSON, which
is compatible with Java script. For instance, GeoJSON [35] is
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@stboundedby,urn:x-ogc:def:crs:EPSG:6.6:4326,,0.0 0.0,5.0 5.0,2012-01-17T12:33:41Z,2012-01-17T14:00:00Z,sec

@columns,mfidref,trajectory,typecode,xsd:integer,mode,xsd:integer

a,0,1050,1.0 1.0 2.0 3.0,1001,12

b,0,2400,1.0 2.0 1.0 3.0,1001,2

a,1050,2410,2.0 3.0 1.0 1.0,1002,12

b,2400,5000,1.0 2.0 1.0 3.0,1001,2

a,2410,5000,1.0 2.0 1.0 3.0,1001,2

Fig. 6. An example of OGC R© Moving Features CSV. Two header lines which start with ‘@’ are shown. Many trajectory lines follow them.

TABLE II. DATASIZE ESTIMATION

Style Datasize Required parser Advantage

CSV text 57.6GB CSV Parser Easy to read

XML 230.4GB XML parser Extendable metadata

GeoJSON 259.2GB Java Script parser Web friendly

Binary 83.5GB Binary parser high performance

the most popular JSON schema describing geometric objects.
Using GeoJSON, one linear track is encoded as follows.

{"type": "Feature",

"geometry": {"type": "LinerTrajectory",

"coordinates": [[1.0, 1.0], [2.0 3.0]]},

"properties’’:{"mfidref":"a", "starttime":"0",

"endtime":"1050", "attr": ["1001","2"] },

The data size is around 180 bytes. Thus the entire data size
is 259.2GB. Additionally, the most compact encoding style is
encoding as a binary data stream. All data to be encoded are
as follows: the ID of a moving object, the start time and end
time of the track, the shape of the track, and the attributes.
The ID takes 2 bytes including a delimiter if the ID is “a”.
The data size of start and end time is 16 bytes because time
is encoded with 8 bytes integer. Trajectory shape requires 32
bytes because four coordinate values are encoded with 8bytes
double precision floating point number. The attributes “1001”
and “2” can be encoded with 4 bytes integer, so 8 bytes are
required. Accordingly, one trajectory data size is 58 bytes in
total, and entire datra size is 83.52 GB. This is greater than
that of CSV. A CSV line will be longer if a large dataset is
encoded because text describing time and coordinate values
become longer, however the data size with binary would be
comparable with that with CSV nevertheless.

This rough estimation of data size is summarized in Table
II. Data sizes by CSV text and binary are around 1/4 of that by
XML and JSON. Implementaion of software handling XML
and JSON data is easy because existing pasers are available for
loading XML and JSON data. Binary encoding, that requires
a new paser, has a drawback in this standpoint. CSV text
also requires a new parser, but such paser is easy to develop
because CSV is a common and simple format. Therefore, CSV
encoding is adpted as a simple encoding style. Besides, binary
encoding is being considered as one of the next steps because it
has another advatages: perfomance of processing is quite high.
Furthermore, JSON encoding is also positioned as future work
because of easiness of implementation especially for web site.

VI. “VELOCITY” - FAST DATA EXCHANGE API

Ideally, locational big data should be collected in real time,
as discussed above. High-throughput protocol to send data is
therefore required. If one million people send their locations
every five minutes, the required throughput is more than 3,000
record/sec. This throughput is very high, so for handling such
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requests using HTTP, very powerful and expensive hardware
is required. To keep costs reasonable, we need a faster API to
send locational big data in real time.

In most cases, an API should provide many functions; au-
thentication, registration, metadata sharing, and so on. Several
APIs with such functions are currenly in use, but they are
implemented on HTTP, too slow. Therefore, non-HTTP APIs
are needed.

We therefore propose an API using a stream proto-
col named message queuing telemetry transport (MQTT)
[36] to send Moving Features Simple CSV data. MQTT
uses a publish-subscribe message pattern to provide one-
to-many message distribution, as shown in Fig. 7. The
message sent from a publisher is registered as a topic,
which is a named logical channel classifying messages into
a hierarchical structure (e.g. /sensor/1/temperature,
/sensor/1/pressure). The message registered as the
topic is delivered to one or multiple subscribers that applied
to that topic for a delivery.

Figure 8 shows the system architecture of an MQTT-based
data-collection system. The components of this system are
classified into three main parts: publishers, subscribers, and
brokers. “Sensor” is an entity that provides data of an observed
property as output. Multiple sensors make up a system called
“sensor system”. A “location data aggregator” receives location
data from sensor systems and sends location data to location
data receivers. These receivers (which are applications) receive
the location data from location data aggregators.

Figure 9 shows a sequence for data collection by the
proposed protocol. The processes in the sequence are classified
into two steps: registration of sensors and applications ((1) in
the figure), and sending location data ((2) in the figure).

The registration processes are defined for provid-
ing functions such as registration and metadata sharing.
“RegisterSensor” is an operation for registering the in-
formation of a sensor system to a location data aggregator
while the registration processes. The data aggregator deletes
the information of a sensor system when it receives an
empty RegisterSensor message from the sensor system.



1903

Sensor 

Sensor 

Sensor 

Sensor 

Sensor 

Sensor 

Sensor System 

Sensor System 

Location 

Data 

Aggregator 

Application 

Application 

Application 

Application 

Sensor 

Aggregator 
MQTT 

Broker 
MQTT 

Subscriber 

MQTT 

Publisher 

Fig. 8. Moving-Features-data-collection system. A set of sensors managed
in a system is called a sensor system here. MQTT topic is defined for each
sensor system to distribute location data to each application.
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Fig. 9. The sequence of the protocol. It’s processes are categorized into
two types: “(1) registration of sensors and applications” and “(2) sending
location data”. Most functions such as initialization are carried out while the
Registration.

“InsertTrajectory” is an operation for sending loca-
tion data from sensor systems to applications. The applica-
tions requiring sensor data have to register as subscribers of
InsertTrajectory in the registration processes.

The sending processes are processes to send lo-
cation data periodically. The sensor systems publish
InsertTrajectory messages including location data in
their payload. The location data aggregator receives them, and
it distributes them to the applications.

The detailed specification is presented in the following
sections.

A. Registration of sensors and applications

The registration for a sensor system is as follows:

1) The sensor system sets a topic
”lcp/RegisterSensor/[SensorSystemID]”

and a schema definition (which is a header part
defined by OGC R© Moving Features Simple CSV),
where ”lcp” comes from acronyms of ”location
collection protocol”.

The registration for an application is as follows.

1) The application sends a request for registration as
a subscriber of topic ”lcp/RegisterSensor/#”
to the location data aggregator. ”#” is a wild card in
topic definition of MQTT.

2) The location data aggregator registers the application.
3) The location data aggregator sends the latest mes-

sage of topic ”lcp/RegisterSensor/#”. This
message includes sensor system IDs and schema
definitions generated by the sensor systems.

4) The application sends a request for
registration as a subscriber of topic
”lcp/InsertTrajectory/[SensorSystemID]”

5) The location data aggregator registers the application.

B. Sending location data

Sending and receiving location data processes are as fol-
lows:

1) The registering sensor system sends location data
encoded by OGC R© Moving Features Simple CSV
data body to the location data aggregator on topic
”lcp/InsertTrajectory/[SensorSystemID]”.

2) The location data aggregator sends the location
data to applications which are subscribers of topic
”lcp/InsertTrajectory/[SensorSystemID]”.

When a sensor system stops sending location data, it
unregisters with an empty RegisterSensor message as
follows:

1) The sensor system sends a message with an
empty payload to the location aggregator on topic
”lcp/RegisterSensor/[SensorSystemID]”.

2) The location data aggregator sends the mes-
sage to applications registering as subscribers of
”lcp/RegisterSensor/[SensorSystemID]”.

C. Experimental performance estimation

To confirm the feasibility of this API, an experimental
evaluation of throughput was conducted. For comparison, the
most popular protocol HTTP was also evaluated.

Evaluation environments were as follows. Apache Tomcat
was used as the HTTP Web server. The method to send
location data was very simple: GET method with arguments
that include (x, y). Mosquito and Paho Java were used as
the MQTT environment. A parameter to determine quality of
service (QoS) in MQTT was tested for all cases (QoS1, QoS2,
and QoS3). Data size of one piece of location data was set to
100 bytes.

The evaluation was conducted as follows. First, 1,000
records/sec was set as the data-sending rate and the records
that actually arrived were counted. We use the ratio of the
arrival rate to data-sending rate as the criteria of this evaluation.
A ratio less than 100 % indicates that the throughput is
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Fig. 10. Performance comparison. QoS 0 of MQTT achieved outstanding
results.

not enough. Various data-sending rates were tested: 3,000
records/sec, 10,000 records/sec and 30,000 records/sec.

Figure10 plots the results of the experiment. Horizontal
axis indicates the data-sending rate and vertical axis indi-
cates the ratio to the actual throughput. Only MQTT QoS0
achieved 100% when the data-sending rate was less than
10,000 records/sec. The other setting never achieved 100%
even if 1,000 records/sec was set as the data-sending rate.
1,000 records/sec equals a case in which 60,000 people send
their location every seconds. This situation is not particularly
unusual, and even so MQTT QoS1, MQTT QoS2, and HTTP
were insufficient for such cases. This demonstrates that MQTT
QoS0 is the only possible solution. MQTT QoS0 does not
ensure that all data is distributed; that is, some of data might
not arrive. However, in many cases, a lack of location data
does not create a problem so long as the missing pieces of data
are relatively few. Therefore, the API to send OGC R© Moving
Features CSV data using MQTT QoS0 is feasible for many
applications.

VII. CONCLUSION

For locational bigdata, issues referred to as the “4Vs”
need to be addressed in order to create more “value”. OGC R©

Moving Features, which is a common and simple trajectory-
data encoding standard, is helpful for exchanging “various”
data without increasing data “volume”. Furthermore, commu-
nication protocol using MQTT is useful for exchanging OGC R©

Moving Features data in order to accelerate “velocity” of data
distribution. Accordingly, a clue for the 4Vs are provided by
OGC R© Moving Features. We consider that OGC R© Moving
Features is helpful for advancing technologies relating to
locational bigdata.

Actually, there is another “V” – “Veracity”, that is, data
quality. Data quality issues are also in scope of the OGC R©

standard, and these shall be the focus of our future work.
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