
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1892

High Performance Analysis of Big Spatial Data

David Haynes1, Suprio Ray2, Steven M. Manson3, Ankit Soni1
1Minnesota Population Center, University of Minnesota

{dahaynes, asoni}@umn.edu
2Faculty of Computer Science, University of New Brunswick, Fredericton

sray@unb.ca
3Department of Geography, University of Minnesota

manson@umn.edu

Abstract— Every year research institutions produce petabytes
of data. Yet, only a small percent of the data is readily accessible
for analysis. Terra Populus acts as the bridge between big data
sources and researchers. Researchers are provided convenient
web applications that allow them to access, analyze, and tabulate
different datasets under a common platform. Terra Populus is
developing three unique applications. The first application,
Paragon, is a prototype parallel spatial database, which aims to
extend the functionality of PostgreSQL and PostGIS onto
multinode systems. Terra Populus’ Tabulator application
employs Parquet on Spark to build dynamic queries for
analyzing large population survey data. The last application,
Terra Explorer, is an exploratory analysis tool for visualizing the
spatial datasets within the repository.

Index Terms— big spatial data, spatial analysis, spark,
parquet, web mapping, dynamic visualization

I. INTRODUCTION
The Terra Populus project demonstrates emerging

capabilities in integrating complex big data – namely,
heterogeneous spatial data – within high performance
computation environments. Terra Populus identifies, acquires,
and develops various data sources ranging from historic
handwritten census forms to current satellite observations of
the earth. The aim of the project is to preserve these data and
make them Internet-accessible, so they are readily available for
scholars, students, policy makers, and members of the public.

Terra Populus is a member of the National Science
Foundation, Datanet Initiative, the goal of which is to develop
cyber infrastructure that preserves, integrates, and provides
open access to scientific data. Terra Populus utilizes an open
source ecosystem to provide access to heterogeneous big data
(microdata, raster data, and vector data) for researchers
studying a range of social and natural systems along with
human-environment interactions. A primary challenge for this
project has been developing methods that preserve the integrity
of the underlying data, are sufficiently flexible to support the
needs of many different users, and scale for high performance
computation. The tools and platforms that we are developing
provide users with the ability to create tailored queries, that
may be analyzed quickly, which in turn fosters the growth of
scientific knowledge.

 The Terra Populus data collection exemplifies two of
primary “V’s” commonly attributed to big data: variety,
volume. We deal with data from a wide array of sources
(variety); some of the large databases in the world (volume);
and with remotely sensed imagery, among others, which are
collected in large and rapidly increasing amounts. Terra
Populus also deals with big data characterized by two newer
“V’s”, namely value (integrating our data products provides
new greater scientific understanding) and veracity (our data
collection is composed of gold-standard which is vetted for
research).

The data processing toolset that we are developing seeks to
accommodate all of these big data characteristics. There are a
growing number of big data processing and analytics toolsets,
yet there are is a paucity of tools (or even basic research) that
work with heterogeneous big spatial data or provide
interoperability of between datasets. This paper describes three
computational challenges that exemplify ‘big spatial data’ and
are being tackled by the Terra Populus project. We examine in
particular our approaches for high performance spatial analysis,
dynamic tabulation, and dynamic visualization.

II. HIGH PERFORMANCE SPATIAL ANALYSIS: PARAGON
Spatial databases are the driving force behind most

traditional GIS applications, in that, domains ranging from
land surveys to city planning or resource monitoring depend
on the existence of a spatial database on which all other
operations rely. While big data applications are remaking the
form of spatial databases, particularly due to the rapid rise in
data volume, there will always remain a need for spatial
analysis. As a result, we are seeing new classes of spatial
applications and Terra Populus is developing new methods
that operate on spatial data.

Regardless of data source, spatial queries lie at the heart of
spatial analysis. Spatial queries can take many forms,
including range queries (e.g., return all points of land higher
than 4,000m inside a national park), K nearest neighbors
queries, and join queries (e.g., all rivers that have bridges that
cross them), among other. Whereas geospatial Web services
such as Google Maps, are driven by short-running range
queries, many of the emerging spatial analytics applications
are characterized by long-running spatial join queries [6]. For

1893

example, the polyline crosses polylines spatial join query
involving 73 million records takes over 20 hours [4]. These
queries can benefit from high performance query processing.
With the growing popularity of the open source MapReduce
framework Hadoop, a number of MapReduce based spatial
query processing systems have been developed. These include
academic projects like Spatial Hadoop [2] and Hadoop-GIS
[9], along with commercial projects such as GeoTrellis [5].
However, the set of spatial query features supported by these
solutions are still limited, especially compared to standard GIS
products that operate on relational tables. This is why Terra
Populus is currently exploring other options, including the
development of our own system.

Like several other MapReduce based non-spatial systems,
there is a trend towards implementing relational database
features. This move toward relational-like features has led to
the observation [7] that these SQL on MapReduce systems
have come full circle, in that they resemble shared-nothing
parallel relational databases. Paulson et al. [10] argues that
parallel relational databases take advantage of over 20 years of
research, which MapReduce systems cannot match. With
extensive evaluation, they demonstrated that shared-nothing
parallel relational databases perform significantly better than
MapReduce systems. Therefore, we have adopted the view
that a shared-nothing parallel database can offer the best high
performance platform for spatial query processing. Since there
is no existing open-source shared-nothing parallel spatial
database, we are developing one called Paragon.

Paragon is a parallel spatial database that runs a
PostgreSQL database instance in each of the nodes in a cluster
of machines. Spatial support was added to PostgreSQL in
2005, as part of PostGIS extension. While the initial release
only included support of vector data sets, subsequent versions
have included support for raster datasets. As PostGIS has
evolved over the years, so have parallel environments for
PostgreSQL. When first developed it only operated on a single
core; even today when placed on servers with multiple cores it
can only utilize a single core per query. Multiple projects have
made an effort to scale PostgreSQL. GridSQL was one of the
first notable projects to make such an effort, followed by
Stado [12]. Stado supports vector datatypes and but lacks full
functionality for distributing spatial data across a cluster of
machines.

There are a number of research issues that are pertinent to
Paragon in the context of heterogeneous big spatial data
management. In a shared-nothing parallel database, the dataset
is horizontally partitioned and assigned to each node in the
cluster. With spatial data, this partitioning process is known as
spatial declustering. This process involves logically
decomposing the spatial domain into 2-dimensional partitions.
These partitions are called “tiles”. The spatial domain could
be partitioned into regular grids or using another method such
as recursive decomposition based on a constraint on the object
count in each tile. Since a spatial object’s extent may overlap
more than one of these tiles, it may be necessary to replicate
such an object to every partition that it overlaps. Due to these
considerations, there exists a few design choices and as a

consequence several spatial declustering approaches have
been proposed [18, 19, 4, 11]. The creation of tiles through
spatial declustering enables parallel join, as each tile could be
processed independently. The overall performance of a spatial
join is determined by the execution time of the slowest tile.
The spatial declustering approach must take into account of
the object distribution skew, processing skew and the fact that
the refinement step dominates the two step spatial query
evaluation [11]. Furthermore, within the Terra Populus
project, a key requirement is to be able to join vector and
raster datasets. Therefore, the spatial declustering approach
must address the fact that vector datasets are discrete single
layer objects, whereas rasters can be comprised of multiple
layers with varying spatial resolutions. Paragon supports both
vector and raster data types. We are developing spatial
declustering algorithms that address the above mentioned
issues.

 Additionally, the query scheduler needs to coordinate
query tasks intelligently among computing nodes. Paragon
executes a spatial join query in an iterative fashion, each node
processing one partition at a time. This is inspired by our
previous work [4, 11]. However a limitation of the previous
approach is that each node needed to host the entire set of
partitions. We are exploring spatial partitioning approaches,
such that each node can host a subset of the partitions. Finally,
to achieve good performance, the query optimizer needs to
generate “ideal query plans” [4] while executing spatial join
queries, essentially taking spatial locality into account.
Although Stado supports vector-based spatial queries, it does
not support spatial declustering based data distribution and
does not generate ideal query plans with spatial queries. As a
result, the parallel performance of a spatial join query with
Stado could actually be worse than that of the sequential
execution with a PostgreSQL instance. For example, we
demonstrated in [20] that the execution time of the query
“Polyline Intersects Polygon” with a 2-node Stado system is
significantly longer than that with a single instance
PostgreSQL.

To address the above-mentioned issues we have developed
Paragon, as an extension to Stado [12]. Paragon exploits a
cluster of nodes, each of which hosts a PostgreSQL/PostGIS
database instance. We present a preliminary evaluation of
Paragon for a dataset consisting of line and polygon objects
from the TIGER [6] California dataset. The details of the
dataset are shown in table 1.

The current implementation of Paragon uses a variant of
round-robin declustering. The declustering algorithm
produced 1024 spatial partitions after processing the dataset in
Table 1. The physical storage and management of the
partitions in Paragon is done by taking advantage of
PostgreSQL’s sharding feature [16]. We extended the SQL
create table statement to specify spatial declustering
parameters, such as, the number of partitions to be created, the
declustering method, and a label for the declustering scheme.
To execute a spatial join, the labels of the two tables, being
joined, must match. This mechanism allows the same spatial
dataset to be partitioned using different declustering schemes.

1894

Table 1. Spatial data used for comparison
Database Table (acronym) Geometry Number of Objects

Area-water (Aw) Polygon 39,334
Area-landmass (AI) Polygon 5,5951
Edge (Ed) Polyline 4,173,498

Table 2. Comparison of Query Times: Paragon vs PostgreSQL

Query (acronym) PostgreSQL
(seconds)

Paragon
(seconds)

Speedup

Polygon overlaps Polygon
(Aw_ov_Aw)

 77.3 53.5 1.37

Polyline Touches Polygon
(ED_to_Al)

 452.9 246.0 1.84

Polyline Crosses Polyline
(Ed_cr_Ed)

 1693.2 1022.0 1.65

We executed spatial join queries from the Jackpine spatial

database benchmark [6] with Paragon in a two node cluster.
The queries are expressed in SQL with some of the spatial
predicates adopted by Open Geospatial Consortium (OGC).
For instance, Code 1 demonstrates the “Polyline Touches
Polygon” query shown in Table 2.

Code 1. Spatial SQL Query

SELECT COUNT(*) FROM edges ed, arealm al WHERE
ST_Touches(ed.geom, al.geom);

A comparison of observed single run execution times is
shown in Table 2. The results show, Paragon achieves near
linear speedup with 2 nodes, which bodes well for moving the
system to multiple nodes. We plan to evaluate Paragon with a
larger cluster in the future.

Although optimized for spatial join, since Paragon is a
parallel relational database, it is well suited for complex joins
involving spatial and non-spatial tables. Our hope is that
Paragon will become a useful tool for big geospatial data
processing to the research community as well as enterprises

III. DYNAMIC TABULATION
Microdata is the term used to denote survey data on

individuals and households collected by government census
agencies. It is extremely rich data, due to its flexibility for
tabulation. Since a microdata record contains all the responses
of a single individual, researchers are able to create new
tabulations from the original data. Currently Terra Populus is
investigating high performance computation platforms that
will allow users to build their own tabulations from microdata
datasets and its variables. A Terra Populus user can use the
system and tabulate the data by selecting the datasets, the row
and column variables and any constraints or filters which
should be applied on those variables. Usually a geographic
variable (e.g. county code) forms a row variable, in order for
users to analyze data geographically, however that is not a
necessary.

For example, a researcher may be interested in studying the
effect of education attainment on marital status and conception
of first child. The proposed system could generate/tabulate
this targeted population data-set to the researcher through a
tabulation definition, where the sex is female, who have had at

least one child, age is between 16-45, and tabulated against all
levels of education. Such tabulations are common in social
science research and support specific research questions. In
this example, the system would construct a spark operation
similar to, Code 2.

Code 2. Pseudo Code in Python
data_frame.filter(“SEX = F AND NUMBER OF

CHILDREN>1 AND 16<=AGE<=45”).groupBy([“dataset”,
“AGE”, “EDUCATION ATTAINMENT”, “MARITALSTATUS”,

“ELDEST CHILD”]).count()

In the initial design, we developed a tabulator which had
pre-defined rules on each variable/column of each data-set. In
this case, users were only allowed to selected data defined by
those pre-defined rules. For example, the variable AGE was
divided into subgroups of 0 to 4, 5 to 9 and so on. The data
was physically limited to theses predefined aggregations.
Therefore, when using the initial tabulator aggregations could
only take place on the defined variable/columns rules like
age_5_9. However, given the size and granularity of different
data-sets, we proposed designing a new tabulator that removes
all pre-existing aggregations, placing all the age data under a
single variable/column AGE. The result is that the end-user is
has more functionality at their disposal and can create custom
queries that are appropriate for the study, such as tabulating all
persons age six (e.g. age= 6). This increases the user querying
flexibility on our system and provides ability to define custom
queries as described in Code 2.

During our initial phase tests, we also found that relational
databases do not scale well when working with data-sets
where the table structure is in a de-normalized form with a
large number of columns. This is due to the nature of
traditional databases, where they carry most columns of the
rows while performing operations on the selected data. This
makes on the fly operations difficult to perform when the
number of columns becomes large. In addition, we have
evidence that aggregation or large ranged queries do not also
perform well on these de-normalized form tables. This led us
towards column store databases.

The proposed tabulator employs a columnar storage
database due to the reasons that storage, retrieval, selection
and filter operations can be done efficiently. As our data
extraction system utilizes PostgreSQL and PostGIS for spatial
data interoperability, we investigated using a columnar storage
extension for PostgreSQL, cstore_fdw, which is a foreign data
wrapper for PostgresSQL. However, we have moved away
from using cstore_fdw for tabulation as it has an upper limit of
1600 columns, whereas some data-sets or union of data-sets
can contain more columns than that.

Currently we are testing Apache Spark’s Parquet as the
columnar storage database [13] for our next generation
tabulator. Parquet allows for columnar storage in which
columns are type-casted to Parquet’s inbuilt data types,
allowing for greater compression per data type. This approach
gives a high compression ratio while still allowing for fast
data fetching. This is based on an existing record shredding
and assembly algorithm [14]. Although converting regular flat

1895

files to Parquet format is a time consuming process, it does
make up for it by optimizing the query performance on large
amounts of data. Since our usecase has rare updates, a single
Parquet conversion results in better query performance over
time. Once converted to Parquet format, the datasets can then
be queried via Spark SQL [15].

We tested the performance of Parquet using IPUMS-I [17]
datasets, which is the primary microdata source of Terra
Populus[1]. These tests were performed on a single machine
with eight processors and six gigabytes of memory. Table 3
shows multiple query results. Query 1 returns a summary
count of records, where the records are filtered by a column
value and grouped by data (e.g. count of males in Argentina
1970).

Code 3. Spark SQL Query 1 in Python
all_people.filter(“SEX = 1”).groupBy([“SEX”,

“dataset”]).count()

Query 2 employs filters on two columns, and performs

three aggregations (e.g count of males 15-20 years old in
Argentina 1970). Query 3 employs four filters on three
columns and performs aggregations on five column variables.
The dataset chosen for the single dataset test, row 1, was
Brazil 2010 which has 309 columns. The datasets chosen for
row four consists of multiple country datasets in South
American. The dataset has 4326 unique columns across 56
different datasets. The datasets chosen for rows two and three
are subsets of the data found in row four.

Table 3. Parquet query performance on multiple datasets
Number

of datasets
Number of

records
Time for
Query 1

Time for
Query 2

Time for
Query 3

1 12 million 5 seconds 9 seconds 10 seconds
10 25 million 7 seconds 10 seconds 18 seconds
20 82 million 10 seconds 12 seconds 27 seconds
56 128 million 7.5 seconds 20 seconds 30 seconds

IV. DYNAMIC VISUALIZATION
The integration and development of our data repository will

grant researchers access to new datasets and formats. While
many of our existing users are used to, and prefer, text-based
interfaces, we expect some portion of our user community to
want visual/spatial interfaces as well. We are therefore
developing a web mapping application that acts as a data
exploration tool. Terra Populus is rare among human-
environment data portals in that users have the ability to tailor
their extracts to the datasets they need. This presents
opportunities and challenges because users may identify or
exclude datasets from their extracts. The visualization
application that we are developing helps users understand the
availability of data within the study area of their choice.

The application has three main components: a web
mapping pane, data selection pane, and a data visualization
pane, Fig. 1. We use Geoserver, a Java server application that
provides spatial data delivery for web applications [8]. The
application uses the JavaScript library OpenLayers to consume
and display these spatial datasets on the mapping interface.

Through this application Terra Populus integrates spatial and
non-spatial datasets.

Figure 1. Terra Explorer Landing Page

The primary purpose of the application is to support data
exploration, and our development efforts have therefore
focused on implementing a dynamic and interactive framework
that reflects the other applications within our eco-system.
Currently, the application allows users to interactively visualize
vector and raster datasets. Areal datasets are dynamically
created and styled using choropleth mapping techniques and
Geoserver’s REST SLD API. Variable substation is applied to
rasters to elicit a similar effect. In this approach we each value
of a categorical raster is an independent category. For example,
IGBP MODIS satellite imagery has pixel values which range
from 0 to 255, with pixel values 0-16 representing landcover
types (i.e. 0 = water, 12 = croplands). The application allows
the user to adjust the opacity values for any of raster pixel
value. This enhances the user’s understanding of the presence
of particular components of dataset within their study region.

The web mapping interface allows for data exploration, and
facilitates the understanding of presence of data. However, web
mapping is not the only visualization tool in our application.
Data visualizations (i.e. bar charts and plots) combined with
mapping can enhance the user’s understanding of data. Data
summarization of our areal (population demographic) and
tabulated datasets are relatively straightforward and can be
implemented using the previously described tabulator.
However, real-time summarization of raster datasets is a
computationally intensive problem that remains unsolved. To
implement this capacity we have worked with the Spatial
Hadoop team to develop a prototype spatial overlay engine [2].
This new prototype supports zonal statistic calculations of
rasters in their native GeoTIFF format using Spark.

The prototype engine calculates zonal statistics for any
spatial region, and returns via API summary statistics (i.e. min,
max, mean, sum, count). To perform this analysis a spatial
overlay between vector and raster datasets, is implemented
with the Spatial Hadoop platform. The engine must be able to
handle different spatial projections, as the project utilizes
datasets derived from different satellite instruments. To reduce
data errors caused from projections, we project vector datasets
to the raster coordinate system and then perform the zonal
analysis. The first step is to tile and compress the raster. This
reduces I/O costs and memory challenges. While doing this, we

1896

create a metadata file that provides the spatial bounding box of
each compressed raster tiles. Next a scan-line fill algorithm is
used to determine, which pixels lie within the geographic unit.
The third step aggregates the pixels and their values by
zone/geographic unit and returns the result. The resulting data
can then be visualized with data visualization panes.

V. CONCLUSION
Terra Populus is advancing our ability to integrate complex big
data in a high performance computation environment. Terra
Populus has chosen to employ open source software to manage
a large range of data in a mix of formats (microdata, raster
data, and vector data) for use by researchers studying a range
of social, biophysical, and human-environment systems. While
there are a growing number of open-source candidates to meet
the challenges faced by Terra Populus, there is a profound need
for a general framework that operates on heterogeneous big
data. We focus on the solutions for high performance spatial
analysis, dynamic tabulation, and dynamic visualization.

REFERENCES
[1] Terra Populus. http://www.terrapop.org/
[2] A. Eldawy, M. F. Mokbel. SpatialHadoop: A MapReduce
Framework for Spatial Data. ICDE. 2015.
[3] S. Wang. A CyberGIS Framework for the Synthesis of
Cyberinfrastructure, GIS, and Spatial Analysis. AAAG. 2010.
[4] S. Ray, B. Simion, A. D. Brown and R. Johnson. A Parallel
Spatial Data Analysis Infrastructure for the Cloud. SIGSPATIAL
GIS. 2013.
[5] GeoTrellis. http://geotrellis.io/

[6] S. Ray, B. Simion, and A. D. Brown. Jackpine: A Benchmark to
Evaluate Spatial Database Performance. In ICDE. 2011.
[7] A. Floratou, U. M. Minhas and F. Özcan. SQL-on_Hadoop: Full
Circle Back to Shared-Nothing Database Architectures. VLDB. 2014.
[8] GeoServer. http://geoserver.org
[9] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang and J. Saltz.
 Hadoop-GIS: A High Performance Spatial Data Warehouse System
Over MapReduce. VLDB. 2013.
[10] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S.
Madden, and M. Stonebraker. A comparison of approaches to large-
scale data analysis. SIGMOD. 2009.
[11] S. Ray, B. Simion, A. D. Brown and R. Johnson. Skew-Resistant
Parallel In-memory Spatial Join. SSDBM. 2014.
[12] Stado. https://wiki.postgresql.org/wiki/Stado
[13] Parquet. https://parquet.apache.org/
[14] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. 2010.
Dremel: interactive analysis of web-scale datasets. VLDB. 2010.
330-339.
[15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai,
Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL:
Relational Data Processing in Spark. SIGMOD 2015. 1383-1394.
[16] PostgreSQL Partitioning. http://www.postgresql.org/-
docs/8.3/static/ddl-partitioning.html
[17] IPUMS-I. http://www.ipums.org
[18] J. M. Patel and D. J. DeWitt. Partition based spatial-merge join.
SIGMOD. 1996.
[19] J. M. Patel and D. J. DeWitt. Clone join and shadow join: two
parallel spatial join algorithms. SIGSPATIAL GIS. 2000.
[20] D. Haynes, S. Ray, S. Manson, D. Van Riper, A. Soni and A. D.
Brown. Towards A High Performance System for Heterogeneous
Big Spatial Data. CyberGIS AHM, 2015.

