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Abstract— Every year research institutions produce petabytes 
of data. Yet, only a small percent of the data is readily accessible 
for analysis. Terra Populus acts as the bridge between big data 
sources and researchers. Researchers are provided convenient 
web applications that allow them to access, analyze, and tabulate 
different datasets under a common platform. Terra Populus is 
developing three unique applications. The first application, 
Paragon, is a prototype parallel spatial database, which aims to 
extend the functionality of PostgreSQL and PostGIS onto 
multinode systems. Terra Populus’ Tabulator application 
employs Parquet on Spark to build dynamic queries for 
analyzing large population survey data. The last application, 
Terra Explorer, is an exploratory analysis tool for visualizing the 
spatial datasets within the repository. 

Index Terms— big spatial data, spatial analysis, spark, 
parquet, web mapping, dynamic visualization 

I. INTRODUCTION 
The Terra Populus project demonstrates emerging 

capabilities in integrating complex big data – namely, 
heterogeneous spatial data – within high performance 
computation environments. Terra Populus identifies, acquires, 
and develops various data sources ranging from historic 
handwritten census forms to current satellite observations of 
the earth. The aim of the project is to preserve these data and 
make them Internet-accessible, so they are readily available for 
scholars, students, policy makers, and members of the public. 

Terra Populus is a member of the National Science 
Foundation, Datanet Initiative, the goal of which is to develop 
cyber infrastructure that preserves, integrates, and provides 
open access to scientific data. Terra Populus utilizes an open 
source ecosystem to provide access to heterogeneous big data 
(microdata, raster data, and vector data) for researchers 
studying a range of social and natural systems along with 
human-environment interactions. A primary challenge for this 
project has been developing methods that preserve the integrity 
of the underlying data, are sufficiently flexible to support the 
needs of many different users, and scale for high performance 
computation. The tools and platforms that we are developing 
provide users with the ability to create tailored queries, that 
may be analyzed quickly, which in turn fosters the growth of 
scientific knowledge. 

 The Terra Populus data collection exemplifies two of 
primary “V’s” commonly attributed to big data: variety, 
volume. We deal with data from a wide array of sources 
(variety); some of the large databases in the world (volume); 
and with remotely sensed imagery, among others, which are 
collected in large and rapidly increasing amounts. Terra 
Populus also deals with big data characterized by two newer 
“V’s”, namely value (integrating our data products provides 
new greater scientific understanding) and veracity (our data 
collection is composed of gold-standard which is vetted for 
research). 

The data processing toolset that we are developing seeks to 
accommodate all of these big data characteristics. There are a 
growing number of big data processing and analytics toolsets, 
yet there are is a paucity of tools (or even basic research) that 
work with heterogeneous big spatial data or provide 
interoperability of between datasets. This paper describes three 
computational challenges that exemplify ‘big spatial data’ and 
are being tackled by the Terra Populus project. We examine in 
particular our approaches for high performance spatial analysis, 
dynamic tabulation, and dynamic visualization. 

II. HIGH PERFORMANCE SPATIAL ANALYSIS: PARAGON 
Spatial databases are the driving force behind most 

traditional GIS applications, in that, domains ranging from 
land surveys to city planning or resource monitoring depend 
on the existence of a spatial database on which all other 
operations rely. While big data applications are remaking the 
form of spatial databases, particularly due to the rapid rise in 
data volume, there will always remain a need for spatial 
analysis. As a result, we are seeing new classes of spatial 
applications and Terra Populus is developing new methods 
that operate on spatial data.  

Regardless of data source, spatial queries lie at the heart of 
spatial analysis. Spatial queries can take many forms, 
including range queries (e.g., return all points of land higher 
than 4,000m inside a national park), K nearest neighbors 
queries, and join queries (e.g., all rivers that have bridges that 
cross them), among other. Whereas geospatial Web services 
such as Google Maps, are driven by short-running range 
queries, many of the emerging spatial analytics applications 
are characterized by long-running spatial join queries [6]. For 
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example, the polyline crosses polylines spatial join query 
involving 73 million records takes over 20 hours [4].  These 
queries can benefit from high performance query processing.  
With the growing popularity of the open source MapReduce 
framework Hadoop, a number of MapReduce based spatial 
query processing systems have been developed. These include 
academic projects like Spatial Hadoop [2] and Hadoop-GIS 
[9], along with commercial projects such as GeoTrellis [5]. 
However, the set of spatial query features supported by these 
solutions are still limited, especially compared to standard GIS 
products that operate on relational tables. This is why Terra 
Populus is currently exploring other options, including the 
development of our own system.  

Like several other MapReduce based non-spatial systems, 
there is a trend towards implementing relational database 
features. This move toward relational-like features has led to 
the observation [7] that these SQL on MapReduce systems 
have come full circle, in that they resemble shared-nothing 
parallel relational databases. Paulson et al. [10] argues that 
parallel relational databases take advantage of over 20 years of 
research, which MapReduce systems cannot match. With 
extensive evaluation, they demonstrated that shared-nothing 
parallel relational databases perform significantly better than 
MapReduce systems. Therefore, we have adopted the view 
that a shared-nothing parallel database can offer the best high 
performance platform for spatial query processing. Since there 
is no existing open-source shared-nothing parallel spatial 
database, we are developing one called Paragon.  

Paragon is a parallel spatial database that runs a 
PostgreSQL database instance in each of the nodes in a cluster 
of machines. Spatial support was added to PostgreSQL in 
2005, as part of PostGIS extension. While the initial release 
only included support of vector data sets, subsequent versions 
have included support for raster datasets. As PostGIS has 
evolved over the years, so have parallel environments for 
PostgreSQL. When first developed it only operated on a single 
core; even today when placed on servers with multiple cores it 
can only utilize a single core per query. Multiple projects have 
made an effort to scale PostgreSQL. GridSQL was one of the 
first notable projects to make such an effort, followed by 
Stado [12]. Stado supports vector datatypes and but lacks full 
functionality for distributing spatial data across a cluster of 
machines. 

There are a number of research issues that are pertinent to 
Paragon in the context of heterogeneous big spatial data 
management. In a shared-nothing parallel database, the dataset 
is horizontally partitioned and assigned to each node in the 
cluster. With spatial data, this partitioning process is known as 
spatial declustering. This process involves logically 
decomposing the spatial domain into 2-dimensional partitions. 
These partitions are called “tiles”.  The spatial domain could 
be partitioned into regular grids or using another method such 
as recursive decomposition based on a constraint on the object 
count in each tile. Since a spatial object’s extent may overlap 
more than one of these tiles, it may be necessary to replicate 
such an object to every partition that it overlaps. Due to these 
considerations, there exists a few design choices and as a 

consequence several spatial declustering approaches have 
been proposed [18, 19, 4, 11]. The creation of tiles through 
spatial declustering enables parallel join, as each tile could be 
processed independently. The overall performance of a spatial 
join is determined by the execution time of the slowest tile. 
The spatial declustering approach must take into account of 
the object distribution skew, processing skew and the fact that 
the refinement step dominates the two step spatial query 
evaluation [11]. Furthermore, within the Terra Populus 
project, a key requirement is to be able to join vector and 
raster datasets. Therefore, the spatial declustering approach 
must address the fact that vector datasets are discrete single 
layer objects, whereas rasters can be comprised of multiple 
layers with varying spatial resolutions.  Paragon supports both 
vector and raster data types. We are developing spatial 
declustering algorithms that address the above mentioned 
issues. 

 Additionally, the query scheduler needs to coordinate 
query tasks intelligently among computing nodes. Paragon 
executes a spatial join query in an iterative fashion, each node 
processing one partition at a time. This is inspired by our 
previous work [4, 11]. However a limitation of the previous 
approach is that each node needed to host the entire set of 
partitions. We are exploring spatial partitioning approaches, 
such that each node can host a subset of the partitions. Finally, 
to achieve good performance, the query optimizer needs to 
generate “ideal query plans” [4] while executing spatial join 
queries, essentially taking spatial locality into account. 
Although Stado supports vector-based spatial queries, it does 
not support spatial declustering based data distribution and 
does not generate ideal query plans with spatial queries. As a 
result, the parallel performance of a spatial join query with 
Stado could actually be worse than that of the sequential 
execution with a PostgreSQL instance. For example, we 
demonstrated in [20] that the execution time of the query 
“Polyline Intersects Polygon” with a 2-node Stado system is 
significantly longer than that with a single instance 
PostgreSQL. 

To address the above-mentioned issues we have developed 
Paragon, as an extension to Stado [12]. Paragon exploits a 
cluster of nodes, each of which hosts a PostgreSQL/PostGIS 
database instance. We present a preliminary evaluation of 
Paragon for a dataset consisting of line and polygon objects 
from the TIGER [6] California dataset. The details of the 
dataset are shown in table 1. 

The current implementation of Paragon uses a variant of 
round-robin declustering. The declustering algorithm 
produced 1024 spatial partitions after processing the dataset in 
Table 1. The physical storage and management of the 
partitions in Paragon is done by taking advantage of 
PostgreSQL’s sharding feature [16]. We extended the SQL 
create table statement to specify spatial declustering 
parameters, such as, the number of partitions to be created, the 
declustering method, and a label for the declustering scheme. 
To execute a spatial join, the labels of the two tables, being 
joined, must match. This mechanism allows the same spatial 
dataset to be partitioned using different declustering schemes. 
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Table 1. Spatial data used for comparison 
Database Table (acronym) Geometry Number of Objects

Area-water (Aw) Polygon 39,334
Area-landmass (AI) Polygon  5,5951
Edge (Ed) Polyline 4,173,498

 
Table 2. Comparison of Query Times: Paragon vs PostgreSQL 

Query (acronym) PostgreSQL 
(seconds)

Paragon 
(seconds) 

Speedup

Polygon overlaps Polygon 
(Aw_ov_Aw) 

      77.3       53.5  1.37

Polyline Touches Polygon 
(ED_to_Al) 

    452.9     246.0  1.84

Polyline Crosses Polyline 
(Ed_cr_Ed) 

  1693.2   1022.0  1.65

 
We executed spatial join queries from the Jackpine spatial 

database benchmark [6] with Paragon in a two node cluster. 
The queries are expressed in SQL with some of the spatial 
predicates adopted by Open Geospatial Consortium (OGC). 
For instance, Code 1 demonstrates the “Polyline Touches 
Polygon” query shown in Table 2. 

Code 1. Spatial SQL Query 

SELECT COUNT(*) FROM edges ed, arealm al WHERE 
ST_Touches(ed.geom, al.geom); 

 

A comparison of observed single run execution times is 
shown in Table 2. The results show, Paragon achieves near 
linear speedup with 2 nodes, which bodes well for moving the 
system to multiple nodes. We plan to evaluate Paragon with a 
larger cluster in the future. 

Although optimized for spatial join, since Paragon is a 
parallel relational database, it is well suited for complex joins 
involving spatial and non-spatial tables. Our hope is that 
Paragon will become a useful tool for big geospatial data 
processing to the research community as well as enterprises 

III. DYNAMIC TABULATION 
Microdata is the term used to denote survey data on 

individuals and households collected by government census 
agencies. It is extremely rich data, due to its flexibility for 
tabulation. Since a microdata record contains all the responses 
of a single individual, researchers are able to create new 
tabulations from the original data. Currently Terra Populus is 
investigating high performance computation platforms that 
will allow users to build their own tabulations from microdata 
datasets and its variables. A Terra Populus user can use the 
system and tabulate the data by selecting the datasets, the row 
and column variables and any constraints or filters which 
should be applied on those variables. Usually a geographic 
variable (e.g. county code) forms a row variable, in order for 
users to analyze data geographically, however that is not a 
necessary. 

For example, a researcher may be interested in studying the 
effect of education attainment on marital status and conception 
of first child. The proposed system could generate/tabulate 
this targeted population data-set to the researcher through a 
tabulation definition, where the sex is female, who have had at 

least one child, age is between 16-45, and tabulated against all 
levels of education. Such tabulations are common in social 
science research and support specific research questions. In 
this example, the system would construct a spark operation 
similar to, Code 2. 

Code 2. Pseudo Code in Python 
data_frame.filter(“SEX = F AND NUMBER OF 

CHILDREN>1 AND 16<=AGE<=45”).groupBy([“dataset”, 
“AGE”, “EDUCATION ATTAINMENT”, “MARITALSTATUS”, 

“ELDEST CHILD”]).count() 
 

In the initial design, we developed a tabulator which had 
pre-defined rules on each variable/column of each data-set. In 
this case, users were only allowed to selected data defined by 
those pre-defined rules. For example, the variable AGE was 
divided into subgroups of 0 to 4, 5 to 9 and so on. The data 
was physically limited to theses predefined aggregations. 
Therefore, when using the initial tabulator aggregations could 
only take place on the defined variable/columns rules like 
age_5_9. However, given the size and granularity of different 
data-sets, we proposed designing a new tabulator that removes 
all pre-existing aggregations, placing all the age data under a 
single variable/column AGE. The result is that the end-user is 
has more functionality at their disposal and can create custom 
queries that are appropriate for the study, such as tabulating all 
persons age six (e.g. age= 6). This increases the user querying 
flexibility on our system and provides ability to define custom 
queries as described in Code 2. 

During our initial phase tests, we also found that relational 
databases do not scale well when working with data-sets 
where the table structure is in a de-normalized form with a 
large number of columns. This is due to the nature of 
traditional databases, where they carry most columns of the 
rows while performing operations on the selected data. This 
makes on the fly operations difficult to perform when the 
number of columns becomes large. In addition, we have 
evidence that aggregation or large ranged queries do not also 
perform well on these de-normalized form tables. This led us 
towards column store databases. 

The proposed tabulator employs a columnar storage 
database due to the reasons that storage, retrieval, selection 
and filter operations can be done efficiently. As our data 
extraction system utilizes PostgreSQL and PostGIS for spatial 
data interoperability, we investigated using a columnar storage 
extension for PostgreSQL, cstore_fdw, which is a foreign data 
wrapper for PostgresSQL. However, we have moved away 
from using cstore_fdw for tabulation as it has an upper limit of 
1600 columns, whereas some data-sets or union of data-sets 
can contain more columns than that. 

Currently we are testing Apache Spark’s Parquet as the 
columnar storage database [13] for our next generation 
tabulator. Parquet allows for columnar storage in which 
columns are type-casted to Parquet’s inbuilt data types, 
allowing for greater compression per data type. This approach 
gives a high compression ratio while still allowing for fast 
data fetching. This is based on an existing record shredding 
and assembly algorithm [14]. Although converting regular flat 
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files to Parquet format is a time consuming process, it does 
make up for it by optimizing the query performance on large 
amounts of data. Since our usecase has rare updates, a single 
Parquet conversion results in better query performance over 
time. Once converted to Parquet format, the datasets can then 
be queried via Spark SQL [15]. 

We tested the performance of Parquet using IPUMS-I [17] 
datasets, which is the primary microdata source of Terra 
Populus[1]. These tests were performed on a single machine 
with eight processors and six gigabytes of memory. Table 3 
shows multiple query results. Query 1 returns a summary 
count of records, where the records are filtered by a column 
value and grouped by data (e.g. count of males in Argentina 
1970). 

Code 3. Spark SQL Query 1 in Python 
all_people.filter(“SEX = 1”).groupBy([“SEX”, 

“dataset”]).count() 
 
Query 2 employs filters on two columns, and performs 

three aggregations (e.g count of males 15-20 years old in 
Argentina 1970). Query 3 employs four filters on three 
columns and performs aggregations on five column variables. 
The dataset chosen for the single dataset test, row 1, was 
Brazil 2010 which has 309 columns. The datasets chosen for 
row four consists of multiple country datasets in South 
American. The dataset has 4326 unique columns across 56 
different datasets. The datasets chosen for rows two and three 
are subsets of the data found in row four. 

Table 3. Parquet query performance on multiple datasets 
Number 

of datasets 
Number of 

records  
Time for 
Query 1 

Time for 
Query 2 

Time for 
Query 3 

1 12 million 5 seconds 9 seconds 10 seconds
10 25 million 7 seconds 10 seconds 18 seconds
20 82 million 10 seconds 12 seconds 27 seconds
56 128 million 7.5 seconds 20 seconds 30 seconds
 

IV. DYNAMIC VISUALIZATION 
The integration and development of our data repository will 

grant researchers access to new datasets and formats. While 
many of our existing users are used to, and prefer, text-based 
interfaces, we expect some portion of our user community to 
want visual/spatial interfaces as well. We are therefore 
developing a web mapping application that acts as a data 
exploration tool. Terra Populus is rare among human-
environment data portals in that users have the ability to tailor 
their extracts to the datasets they need. This presents 
opportunities and challenges because users may identify or 
exclude datasets from their extracts. The visualization 
application that we are developing helps users understand the 
availability of data within the study area of their choice.  

The application has three main components: a web 
mapping pane, data selection pane, and a data visualization 
pane, Fig. 1. We use Geoserver, a Java server application that 
provides spatial data delivery for web applications [8]. The 
application uses the JavaScript library OpenLayers to consume 
and display these spatial datasets on the mapping interface. 

Through this application Terra Populus integrates spatial and 
non-spatial datasets.  

 

 
Figure 1. Terra Explorer Landing Page 

The primary purpose of the application is to support data 
exploration, and our development efforts have therefore 
focused on implementing a dynamic and interactive framework 
that reflects the other applications within our eco-system. 
Currently, the application allows users to interactively visualize 
vector and raster datasets. Areal datasets are dynamically 
created and styled using choropleth mapping techniques and 
Geoserver’s REST SLD API. Variable substation is applied to 
rasters to elicit a similar effect. In this approach we each value 
of a categorical raster is an independent category. For example, 
IGBP MODIS satellite imagery has pixel values which range 
from 0 to 255, with pixel values 0-16 representing landcover 
types (i.e. 0 = water, 12 = croplands). The application allows 
the user to adjust the opacity values for any of raster pixel 
value. This enhances the user’s understanding of the presence 
of particular components of dataset within their study region. 

The web mapping interface allows for data exploration, and 
facilitates the understanding of presence of data. However, web 
mapping is not the only visualization tool in our application. 
Data visualizations (i.e. bar charts and plots) combined with 
mapping can enhance the user’s understanding of data. Data 
summarization of our areal (population demographic) and 
tabulated datasets are relatively straightforward and can be 
implemented using the previously described tabulator. 
However, real-time summarization of raster datasets is a 
computationally intensive problem that remains unsolved. To 
implement this capacity we have worked with the Spatial 
Hadoop team to develop a prototype spatial overlay engine [2]. 
This new prototype supports zonal statistic calculations of 
rasters in their native GeoTIFF format using Spark.  

The prototype engine calculates zonal statistics for any 
spatial region, and returns via API summary statistics (i.e. min, 
max, mean, sum, count). To perform this analysis a spatial 
overlay between vector and raster datasets, is implemented 
with the Spatial Hadoop platform. The engine must be able to 
handle different spatial projections, as the project utilizes 
datasets derived from different satellite instruments. To reduce 
data errors caused from projections, we project vector datasets 
to the raster coordinate system and then perform the zonal 
analysis. The first step is to tile and compress the raster. This 
reduces I/O costs and memory challenges. While doing this, we 
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create a metadata file that provides the spatial bounding box of 
each compressed raster tiles. Next a scan-line fill algorithm is 
used to determine, which pixels lie within the geographic unit. 
The third step aggregates the pixels and their values by 
zone/geographic unit and returns the result. The resulting data 
can then be visualized with data visualization panes. 

V. CONCLUSION 
Terra Populus is advancing our ability to integrate complex big 
data in a high performance computation environment. Terra 
Populus has chosen to employ open source software to manage 
a large range of data in a mix of formats (microdata, raster 
data, and vector data) for use by researchers studying a range 
of social, biophysical, and human-environment systems. While 
there are a growing number of open-source candidates to meet 
the challenges faced by Terra Populus, there is a profound need 
for a general framework that operates on heterogeneous big 
data. We focus on the solutions for high performance spatial 
analysis, dynamic tabulation, and dynamic visualization. 
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