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Abstract— The comprehensive and innovative evaluation of 
climate models with newly available global observations is 
critically needed for the improvement of climate model current-
state representation and future-state predictability. A climate 
model diagnostic evaluation process requires physics-based 
multi-variable analyses that typically involve large-volume and 
heterogeneous datasets, making them both computation- and 
data-intensive. With an exploratory nature of climate data 
analyses and an explosive growth of datasets and service tools, 
scientists are struggling to keep track of their datasets, tools, and 
execution/study history, let alone sharing them with others. In 
response, we have developed a cloud-enabled, provenance-
supported, web-service system called Climate Model Diagnostic 
Analyzer (CMDA). CMDA enables the physics-based, multi-
variable model performance evaluations and diagnoses through 
the comprehensive and synergistic use of multiple observational 
data, reanalysis data, and model outputs. At the same time, 
CMDA provides a crowdsourcing space where scientists can 
organize their work efficiently and share their work with others. 
CMDA is empowered by many current state-of-the-art software 
packages in web service, provenance, and semantic search. 
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I. INTRODUCTION  
Improving the model representations of the current climate 

system is essential to enhancing confidence in seasonal, 
decadal, and long-term climate projections. Both the National 
Research Council (NRC) Decadal Survey and the latest 
Intergovernmental Panel on Climate Change (IPCC) 
Assessment Report stressed the need for comprehensive and 
innovative evaluations of climate models with the synergistic 
use of global observations. The traditional approach to climate 
model evaluation, which compares a single parameter at a time, 
identifies symptomatic model biases and errors but fails to 
diagnose the model problems. A new innovative approach 
needs to be developed to diagnose model biases in 
contemporary climate models, identify the physical processes 
responsible for model biases, and incorporate the 
understanding into new model representations that reduce the 
model biases. 

NASA and NOAA have established a collection of data 
centers to store the rapidly growing satellite-based and 
ground-based sensor data and model-generated data. To 
process such datasets, a number of tools and analytics 
software have been established. For example, NASA has 

supported the development of data and information systems, 
including data processing tools and data-service discovery and 
publication tools, such as the Earth Observing System Data 
and Information System (EOSDIS) and NASA Earth 
Exchange (NEX). However, sharing the tools and knowledge 
with the community has not been fully explored and realized 
because of the lack or insufficiency of infrastructure tools to 
support the tool and knowledge sharing. With an explosive 
growth of datasets and service tools, Earth scientists are 
struggling to keep track of their datasets, tools, and 
execution/study history, let alone sharing them with others. 
The community is in desperate need of infrastructure tools to 
support the organization of their work and sharing their 
knowledge. 

In response, we have developed a system called Climate 
Model Diagnostic Analyzer (CMDA). CMDA enables 
diagnostic model evaluations with advanced multi-variate 
statistical and machine learning computing. CMDA provides 
an online collaborative environment where Earth scientists can 
easily publish their climate data analytics web services, share 
them within groups, and find those of others. CMDA currently 
supports (1) all the datasets from Obs4MIPs and a few ocean 
datasets from NOAA and Argo, which serve as observation-
based reference data for model evaluation, (2) many of CMIP5 
model outputs covering a broad range of atmosphere, ocean, 
and land variables from the CMIP5 specific historical runs, 
AMIP runs, and RCP 4.5 experiment runs, and (3) ECMWF 
reanalysis outputs for several environment variables in order to 
supplement observational datasets. Analysis capabilities 
currently supported by CMDA are (1) the calculation of annual 
and seasonal means of physical variables, (2) the calculation of 
time evolution of the means in any specified geographical 
region, (3) the calculation of correlation between two variables 
with a time lag if needed, (4) the calculation of difference 
between two variables, (5) the conditional sampling of one 
physical variable with respect to another variable,  (6) the 
random-forest based feature importance ranking of a variable 
with respect to dependences on other variables, and (7) the 
regridding of datasets with specified horizontal and vertical 
resolutions. 

In this paper, we describe the innovative methodology that 
we have developed for diagnostic model evaluations in Section 
2. We describe the web service technology that we have 
applied to build the online collaborative environment 
infrastructure system in Sections 3 and 4, respectively. We 
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summarize the applications and perceived impact of CMDA in 
climate projection and climate model evaluation in Section 5. 

II. METHODOLOGY FOR DIAGNOSTIC MODEL EVALUATIONS 
We have developed a novel methodology to diagnose 

model biases in contemporary climate models, to identify the 
physical processes responsible for model biases, and to 
incorporate the understanding into new model representations 
that reduce the model biases. The methodology includes (1) 
conditional sampling method, (2) conditional probability 
density function, and (3) random forest.  

A. Conditional Sampling 
Conditional sampling method is originally developed and 

applied for model evaluations by Bony et al. [1]. It is a novel 
way to display a physical quantity 𝑋 according to the values of 
another physical quantity E and to decompose the errors of the 
average quantity of 𝑋 in terms of errors in 𝑋, errors in E and 
errors in the covariance of X and E. The quantity 𝑋 is called a 
sampled parameter and the quantity E is called a sampling 
parameter. By displaying X in terms of E, this method enables 
to study the inter-relationship between 𝑋 and 𝐸. For example, 
we may want to display the cloud ice content according to the 
sea surface temperature. The resulting plot reveals how the 
cloud ice content values are distributed at different sea surface 
temperatures, how the two parameters are related, and how 
well its governing physical process is represented in a model 
in comparison with an observational reference dataset.  

Fig. 1 shows an example plot of the conditional sampling 
method applied to cloud water content profile sampled by 500 
hPa vertical velocity. When the method is applied to model 
outputs and observation/reanalysis dataset, one can easily 
identify model biases in representing the inter-relationship 
between the two physical quantities by comparing the pattern 
of the conditional sampling plots. The bottom middle panel 
shows the result with the CloudSat observation and ECMWF 
reanalysis data, providing a reference for the climate model 
evaluation.    

B. Conditional Probability Density Function 

Conditional probability density function is a by-product of 
the conditional sampling method and is a very insightful 
method to identify the sources and characteristics of model 
errors and to diagnose the model error sources. The 
conditional probability density function (PDF) is defined as 
the PDF of the sampled parameter 𝑋 for a given sampling 
parameter bin 𝑒, referred to as 𝑃(𝑥|𝑒). The conditional PDF 
carries considerably more information about the relationship 
between parameter 𝑋 and 𝐸 than the mean and variance of the 
parameter 𝑋 for a given bin 𝑒.  

As an example of the method, the conditional PDFs of low 
cloud fraction (LCF) as functions of lower tropospheric 
stability (LTS) can be calculated for a climate model output 
(CAM5: the NCAR’s Community Earth System Model) and 
an observation/reanalysis dataset (MODIS-ECMWF). The 
resulting conditional PDFs along with mean values for the 
model and the observation are shown in Fig. 2. The mean 
CAM5 model LCF is systematically lower than observations, 
and the model LCF PDF distributions differ from MODIS. 
While MODIS indicates a rather smooth transition from low 
values of cloud fraction to a solid stratocumulus regime with 
LTS, CAM5 shows a small cloud fraction mode until an 
unrealistic “step-wise” increase in cloud fraction starting at 
around the LTS of 20K. These biased features of the PDFs 
would not have been identified if only the mean values were 
examined. The scientific interpretation of the result is 
presented elsewhere [3].  

C. Random Forest 
Random Forest is an algorithm for classification and 

regression developed by Leo Breiman in 2001 [2]. Random 
Forest uses an ensemble of decision trees. Each decision tree 
is built using a subset of the data samples, and at each split of 
the tree a random subset of input variables is used to evaluate 
the split threshold. The final prediction is the voting (for 
classification) or averaging (for regression) of all the trees. 
Random forest has good performance in both classification 
and regression problems, with skills comparable or sometimes 
superior to those of the support vector machines (depending 
on datasets). We use the random forest method to measure 
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Fig. 1. Example of the conditional sampling method: Cloud water 
content profiles conditionally sampled with 500 hPa vertical velocity 
for contemporary climate models and observational datasets. The 
comparison between the models and observations give insight into 
how well the models represent physical processes governing the 
relationship between the two variables.  

 
 

Fig. 2. Example of the conditional probability density function method: 
Conditional PDFs of low cloud fraction as function of lower tropospheric 
stability. The left panel is with the CAM5 model, and the right panel is 
with the MODIS-ECMWF observation/reanalysis dataset. The striking 
difference in the two plots identifies systematic biases in the CAM5 
model in representing the low cloud. 
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feature importance in model target variables with respect to 
model input variables.  

In Earth science data analysis, it is often helpful to see the 
relationships among a set of physical variables. A typical 
approach is to calculate the correlation coefficient between 
any two variables. However, the correlation coefficient is 
limited to a linear relationship. Even a fitting to an assumed 
function is limited to the assumption made for the fitting. In 
contrast, the random forest does not assume a linear 
relationship or other particular relationship between variables. 
When a target variable and input variables are selected, then a 
random forest model can be built to predict the target variable 
from the input variables. Random forest variable importance 
can be calculated, which ranks the relatedness of the input 
variables to the target variable. 

As an example of random forest application to climate 
data, we have calculated random forest variable importance 
with air temperature vertical profiles as input variables and 
precipitation as a target variable. Fig. 3 shows the results of 
the variable importance ranking. The x-axis is the index 
(pressure value) for the air temperature at a different pressure 
level, and the y-axis is the random forest variable importance 
score. The result shows that the air temperature at 65000 Pa 
has the highest score, indicating that the air temperature at 
65000 Pa influences the most in predicting the target variable 
– precipitation. The scientific interpretation and understanding 
of this kind of results require a more examination and 
exploration of this method.  

III. WEB SERVICE TECHNOLOGY 
Many of research codes are written in a non-general and 

non-scalable way, making it difficult to share with others. In 
addition, the programming languages and libraries used by the 
code often require a local software installation and 
environment configuration, making it difficult for others to 
adopt the tool. In response, we have developed a methodology 
to transform an existing science application code in various 
programming languages into a web service A web service 
approach is chosen because it not only lowers the learning 
curve and removes the adoption barrier of the tool but also 
enables instantaneous use compared to offline standalone 
application, avoiding the hassle of local software installation 
and environment incompatibility. The web service technology 
also has a simple and flexible environment with a rich set of 
open source packages.  

The schematic diagram of creating a web service in 
CMDA with technical components and their relationship with 
one another is shown in Fig. 4. The screenshots of the CMDA 
web service web browser interface are shown in Fig. 5. 

The following steps are taken in creating a web service. 
(1) We wrap an existing science application code with a 

Python caller. The Python caller treats the application as a 
child process, prepares all input arguments for the child 
process, defines where to put the outputs of the child process, 
spawns off the child process, captures the stdout and stderr of 
the child process. At the end, the science application looks like 
a python application. 

(2) We use Flask, an open source light-weight web 
development framework for Python applications, to create an 
entry point code for a web service. The entry code parses input 
arguments from a client (a web service), calls a Python 
application and passes input arguments to the Python 
application, and retrieves return values from the Python 
application and pass them to a client. It follows a REST-ful 
(Representational State Transfer) style, where scoping 
information (what data to operate) is placed in a URI 
(Uniform Resource Identifier) while method information 
(what to do with the data) is conveyed in an HTTP (the 

Hypertext Transfer Protocol) method [1,2].  
(3) We separate application traffic from static HTTP 

traffic. We use Gunicorn to provide WSGI service application 

 
 

Fig. 3. Example of the random forest method: random forest variable 
importance score with air temperature vertical profiles as input variables 
and precipitation as a target variable. The x-axis is the index for the input 
variables. The y-axis is the input variable importance score.  

 
Fig. 4. Schematic diagram of creating a web service in CMDA 

 

 
Fig. 5. Screenshots of CMDA service web browser interface 
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traffic for web service scoping and method information, while 
we use Tornado to provide web service static HTTP traffic for 
web service results.  

(4) We design a web browser interface for a web service 
and implement it using JavaScript.  

IV. ONLINE COLLABORATIVE ENVIRONMENT 
We are building an online collaborative environment in 

CMDA, where a community can build, share, search, and 
recommend web services for climate data analytics and 
organize their execution history. The key functionalities are 
CMDA service publication, CMDA service and dataset search 
and recommendation, and CMDA service execution history 
management. We are building a centralized CMDA service 
registry that maintains a set of links for published CMDA 
services. We are developing a way to automatically create 
front-end HTML pages for CMDA services.  

A system with strong query and recommendation facility 
requires an underlying semantics model. We are developing 
both static semantics and behavioral semantics: static 
semantics describe the functionalities and goals that a CMDA 
service promises to provide, and behavioral semantics 
describe the required circumstances when a CMDA service 
can behave, including input and output parameters, pre- and 
post-constraints, and historical usage patterns. Based on the 
service semantics model, we are developing a technique that 
can automatically extract aforementioned semantic metadata 
from CMDA services. 

In order to support reproducibility, we are developing a 
provenance model to record and track scientists’ activities and 
behaviors. With the execution history stored in a database, we 
are developing a system to search executions and to reproduce 
the results. Fig. 6 shows our current design of the execution 
search page and the search result page.  

We are applying mature semantic web techniques and 
machine learning techniques to build an intelligent search 
facility [6]. Furthermore, we are applying the most recent web 
techniques (including HTML5, JavaScript, Apache Lucene, 
Play framework) and modern software engineering 
methodologies (including Extreme Programming, Agile 
technique, and Scrum) to develop a scalable, extensible, and 
interoperable online environment [7,8]. 

V. EDUCATIONAL USE OF CMDA 
CMDA has been used as an educational tool for the 

summer school organized by JPL’s Center for Climate Science 

in 2014 and will be used again in the summer school in 2015 
[9]. The theme of the summer school is using satellite 
observations to advance climate models, which is well aligned 
with the main goal and capability of CMDA. The 
requirements of the educational tool are defined with the 
interaction with the school organizers, and CMDA is 
customized to meet the requirements accordingly. Since 
CMDA is used by 30+ simultaneous users during the school, 
we have imported CMDA to the Amazon cloud environment. 
The cloud-enabled CMDA provides each student with an 
independent computing resource and working environment 
while the user interaction with the system remains the same 
through web-browser interfaces.  

The summer school in 2014 had five group research 
topics: (1) surface and deep ocean connections; (2) observed 
variability of clouds and precipitation; (3) modeled spatial and 
temporal variability of clouds and precipitation; (4) vegetation 
phenology and climate controls; and (5) land water storage 
variability as a function of human and natural controls. 
CMDA have provided students with 336 climate datasets and 
10 analysis tools. The datasets covered are multi-year monthly 
gridded data from observations, reanalysis runs, and model 
runs. The analysis tools visualize one variable or two variable 
relationships and differences in time average, spatial average, 
correlation, and conditional sampling. A one-hour session for 
the CMDA introduction was given, and immediately after the 
introduction the students were able to start using CMDA with 
a virtual machine assigned to them in Amazon Cloud. The 
students used CMDA for two practice sessions, which lasted 
about 5 hours total, and were able to present their results of 
their group research project. Fig. 7 shows the pictures of the 
summer school during the CMDA introduction session and the 
group research sessions.   

The summer school served as a valuable test-bed for the 
CMDA development, preparing CMDA to serve its target 
community: Earth-science modeling and model-analysis 
community. In the upcoming summer school in 2015, we are 
planning to deploy our online collaborative environment 

features including dataset search and execution history search. 
The new features will help students quickly discover and 
identify datasets needed for their research project and help 

 
Fig. 6. CMDA service execution history search page and result page. 

 
Fig. 7 JPL Center for Climate Sciences summer school in 2014. CMDA 
provided datasets and tools for students to use for their group research 
project during the school. 
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students keep track of their previous results obtained by 
running the CMDA web services and reproduce them if 
needed.   

VI. CONCLUSIONS 
Rapidly growing datasets and analytics services in Earth 

Science challenge individual Earth scientists in organizing their 
work and concurrently challenge the whole community in 
sharing the datasets and tools and derived knowledge. With the 
community recognizing the need of infrastructure systems to 
address those challenges, some systems are under development 
but with a marginal impact so far in terms of tool adoption by 
the community and tool functionality. CMDA is designed to 
address the community need in a lightweight and easy-to-use 
and easy-to-maintain manner, with a focused domain of 
climate data analysis. CMDA provides a space where Earth 
scientists can organize their work efficiently and at the same 
time, share their work with others. With the projected 
exponential growth of the datasets and analytics tools, the goal 
of CMDA is to significantly ease the burden of individual 
scientists, increase their productivity, and as the whole 
community, to increase the scientific return of the NASA and 
NOAA’s Earth science investments. 

The focused Earth science application of CMDA is climate 
data analysis for climate projection and climate model 
evaluation. Recent community reports emphasize the need for 
the comprehensive and innovative evaluation of climate 
models with the synergistic use of global observations. 
Improving the model representations of the climate system is 
critically needed to order to enhance the fidelity of the models 
in seasonal, decadal, and long-term climate projections. 
CMDA enables the important model evaluation activities by 
providing key resources in terms of datasets, analytics services, 
computing resources, and at the same time by providing a 

platform to organize their work and share their work with 
others. 
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