
Earth Science Data Fusion with Event Building Approach

C. Lukashin1, A. Bartle2, E. Callaway2, V. Gyurjyan3, S. Mancilla4,
R. Oyarzun4, and A. Vakhnin5

1 NASA Langley Research Center, Hampton, VA
2 Mechdyne Corporation, Virginia Beach, VA

3 Thomas Jefferson National Accelerator Facility, Newport News, VA
4 University Tecnica Federico Santa Maria, Chile

5 Science Systemt and Applications Inc., Hampton, VA

Abstract: Objectives of the NASA Information And

Data System (NAIADS) project are to develop a

prototype of a conceptually new middleware frame-

work to modernize and significantly improve effi-

ciency of the Earth Science data fusion, big data

processing and analytics. The key components of

the NAIADS include: Service Oriented Architec-

ture (SOA) multi-lingual framework, multi-sensor

coincident data Predictor, fast into-memory data

Staging, multi-sensor data-Event Builder, complete

data-Event streaming (a workflow with minimized

IO), on-line data processing control and analyt-

ics services. The NAIADS project is leveraging

CLARA framework, developed in Jefferson Lab,

and integrated with the ZeroMQ messaging library.

The science services are prototyped and incorporated

into the system. Merging the SCIAMACHY Level-

1 observations and MODIS/Terra Level-2 (Clouds

and Aerosols) data products, and ECMWF re-

analysis will be used for NAIADS demonstration

and performance tests in compute Cloud and Clus-

ter environments. Keywords: earth science, data

fusion, framework, event builder

I. Introduction

One of the key elements of advancing our understand-
ing of Earth’s weather and climate via remote sensing
is integration of diverse measurements into the observ-
ing system. As remote measurements capture larger
amounts and higher quality of data, the demand for
advanced data applications and high-performance in-
formation processing systems becomes a greater chal-
lenge. These challenges are outlined in the OSTP
Guidelines for Civil Space Observations (2013), recog-
nized in the NASA Strategic Space Technology Invest-
ment Plan (2013), and addressed in the NASA Strate-
gic Objective 2.2 and its implementation by “...de-
veloping new technologies and predictive capabilities,
and demonstrating innovative and practical uses of the
programs data and results for societal benefit” (2014).
The concept of maximizing information content by
combining coincident multi-sensor data and enabling
advanced science algorithms, was successfully used by
several past and on-going projects: CERES experi-
ment [1] for deriving accurate radiation fluxes, fusion

of the CERES, MODIS and MISR observations for es-
timating instantaneous shortwave flux uncertainties,
and multi-instrument calibration comparison [2, 3],
fusion of MODIS and PARASOL observations to en-
hance cloud and aerosol retrievals, fusion of data from
CALIPSO, CloudSat, CERES, and MODIS (A-Train
constellation) for comprehensive aerosol and cloud in-
formation [4]. Advanced science algorithms allowed to
reduce uncertainty in weather and climate parameters.
The future satellite constellations and NASA missions:
RBI, TEMPO, CLARREO, ACE, and GEO-CAPE
will require tools for efficient data fusion and process
scaling.

In response to these challenges, we develop the NASA
Information And Data System (NAIADS) – a proto-
type framework for the next generation Earth Science
multi-sensor data fusion and processing. The NA-
IADS’ goal is to provide a novel approach to signif-
icantly improve efficiency in the Earth Science multi-
sensor big data processing and analysis by deploying
conceptually new workflow and state-of-the-art soft-
ware technologies.

II. CLARA Data Streaming Framework

The NAIADS is integrated with CLARA, a Service
Oriented Architecture (SOA) framework [5]. devel-
oped at the Thomas Jefferson National Accelerator
Facility (Jefferson Lab), and ØMQ socket library [6,
7]. The CLARA framework is designed with a service-
oriented architecture to enhance the efficiency, agility,
and productivity of data processing tasks [8]. Data
processing application, developed using the CLARA
framework, consist of chained services, which are
loosely coupled and can participate in multiple algo-
rithmic compositions. It is important to mention that
CLARA makes a clear separation between the service
programmer and the data processing application de-
signer. An application designer can be productive by
designing and composing data processing applications
using available, efficiently and professionally written
software services without knowing service program-
ming technical details. Services usually are long-lived
and are maintained and operated by their owners in
the distributed CLARA software. This approach pro-
vides an application designer the ability and flexibil-

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1882

ity to modify data processing applications by incorpo-
rating different services in order to find optimal op-
erational conditions, thus demonstrating the overall
agility of the CLARA framework approach.

This framework was designed based on a specific set
of principles. As mentioned above, the fundamen-
tal unit of CLARA based data processing application
logic is the service. Services exist as independent soft-
ware programs with a common interface defined by the
framework. User classes, encapsulating specific algo-
rithms and compliant to the required interface, can be
presented as CLARA services (the CLARA Software-
as-a-Service: SaaS implementation). Each service has
its own set of data processing functionalities. These
functionalities or capabilities, suitable for invocation
by other services, can be discovered via registration
information available from the CLARA platform reg-
istry. One of the service design recommendations is
to keep a small and simple service code base, which
will help future programmers to easily extend, modify,
maintain and port services. Services must be agnostic
to any eternal data processing logic. Services must be
discoverable and able to take part in complex service
compositions. By standardizing communication be-
tween services, adapting a data processing application
to changes in one of its components becomes easier
and simplifies data transfer security (for example by
deploying a specialized access control service).

161290& 156250&
103092&

20325&

5133&

361&

100&

1000&

10000&

100000&

1000000&

0.001& 0.01& 0.1& 1& 10& 100& 1000&

M
es
sa
ge
&R
at
e&
[H
z]
&

Message&Payload&

KByte&

CLARA&Service&Bus&Performance&
Orchestrator&I>&DPE(Service1&I>&Service2)&(same&node)&

Intel&2.3&GHz&Core&i7,&Mac&OS&10.10.2&

Message Payload

361 MB/s 0

513 MB/s

203 MB/s

103 MB/s

16 MB/s 1.6 MB/s

Figure 1: CLARA 3-layer architecture.

The CLARA architecture consists of tree layers as
shown in Figure 1: The first layer is the xMsg Service
Bus that provides the ØMQ-based publish-subscribe
messaging system. Every service or component from
the orchestration layer communicates via this bus,
which acts as a messaging tunnel between services.
Such an approach has the advantage of reducing the
number of point-to-point connections between services
required to allow them to communicate in the dis-
tributed CLARA computing environment. The xMsg
is a messaging system, build upon the ØMQ socket
library [6], and can scale to tens of thousands of pro-
cesses if needed. It implements communication pat-
terns such as topic pub-sub, workload distribution,
and request-response. The service layer houses the

inventory of services used to build data processing ap-
plications. The Administrative & Registration stores
information about every registered service in the ser-
vice layer, including address, description and opera-
tional details. The orchestration of data analyses ap-
plications is accomplished by the help of an applica-
tion controller, resident in the orchestration layer of
the CLARA architecture.

161290& 156250&
103092&

20325&

5133&

361&

100&

1000&

10000&

100000&

1000000&

0.001& 0.01& 0.1& 1& 10& 100& 1000&

M
es
sa
ge
&R
at
e&
[H
z]
&

Message&Payload&

KByte&

CLARA&Service&Bus&Performance&
Orchestrator&I>&DPE(Service1&I>&Service2)&(same&node)&

Intel&2.3&GHz&Core&i7,&Mac&OS&10.10.2&

Message Payload

361 MB/s 0

513 MB/s

203 MB/s

103 MB/s

16 MB/s 1.6 MB/s

Figure 2: CLARA Service Bus performance: capability

of transporting up to ∼ 513 MB/sec within single node.

The benchmark measurements, Figure 2, were per-
formed on an Intel 2.3 GHz i7 CPU, utilizing a sin-
gle core. The results show that CLARA’s xMsg-
messaging is capable of transporting 360 MByte/sec
data between processes/services within a single node.
The NAIADS data processing test-case implemen-
tations suggest that data processing latency is ex-
pected to be many orders of magnitude slower than
CLARA/xMsg data transfer latencies, and CLARA
framework overhead would be negligible.

III. NAIADS Architecture

The NAIADS design is based on the implementa-
tion of specific or algorithms/functionalities, required
for Earth Science data tasks, and their integration
with the CLARA framework. The NAIADS archi-
tecture and workflow is shown in Figure 3. Blue
and grey rectangles represent framework’s Data Pro-
cessing Environment (DPE) units, services are shown
with circles, and blue arrows represent transient data
flow. Data staging (SS), reading and pre-sorting (RS),
concentrating (CS) and data-Event building (EB) is
performed on dedicated nodes (within red dashed
line), data-Event-based streaming and processing on
Cloud/Cluster with minimized IO indicated within
green dashed line.

The overall workflow supports multi-stream data fu-
sion by mapping input files into virtual memory from
servers with optimal IO access to files. The raw data is
then locally filtered and sorted into an in-memory data
queue based on fusion parameters. Records from these
queues undergo one or two levels of concatenation to

1883

File 1

File N

SS

SS

RS

RS

RS

RS

CS EB

Pre-sorted
data queue

DPE 1

S S S

SC

DPE 2

SC

S S S

DPE M

SC

S S S

Orchestrator: User Configuration & Control

Fused Data
Event queue

IO & Network
Optimization

Process Scaling

PS

Data Center 1

DPE

DPE

DPE

DPE

Data Center 2

DPE

Figure 3: NAIADS architecture and workflow: data

staging (SS), in-memory reading (RS), data concentrat-

ing (DS), and data-Event building (EB) is performed on

dedicated nodes (within red dashed line) for IO and net-

working optimization. Data-Event processing is scaled

on Cloud/Cluster (within green dashed line).

produce the final data-Events. In the case where all
processing takes place over a local high-speed network,
the first level of concatenation is unnecessary. In the
case where data is fused from multiple remote loca-
tions (Data Center 1, 2, etc.) it is advantageous to
perform the final concatenation at the site that pro-
vides the optimal volume/concentration of pre-sorted
data. Completed data-Events are stored in a queue
and can then be consumed by separate science pro-
cessing workflows.

Data Predictor Service (PS): The PS is a service
for predicting time, location and geometry of near-
coincident data for given sensors. This service involves
orbital simulation of spacecraft location using Simpli-
fied General Perturbations (SGP4), and modeling in-
strument data acquisition mode (e.g. cross-track op-
eration from LEO or scanning from GEO platform).
Orchestrator : Deploys and configures services for user
defined data processing, monitoring, exception han-
dling and recovery processes. Orchestrator builds ap-
plications based on available services, and it designs
and controls data-flow by linking all services together.
Data Staging Service (SS): The SS maps the initial
data file into virtual memory, the data size is defined
at the service configuration stage by user (Orchestra-
tor). The SS is the only NAIADS system component
that performs multi-file IO.
Data Reader Service (RS): Once data is staged, the
RS starts a worker and sender threads. Worker thread
reads the input buffer, filters and sorts based on re-
quired parameters, and fills the pre-sorted data queue.
When the pre-sorted data queue is filled up to a de-
fined water mark – sending-thread will start sending
records to the Data Concentrator Service (CS).
Data Concentrator Service (CS): Does the partial
event building, by concatenating records found at the

specific data center. This service is used to reduce the
volume of communication between data centers, and
to optimize the network load.
Data Event Builder (EB): Is the final stage of com-
plete data-Event building that generically combines
data records from multiple data sources. Each data-
Event represent a self-sufficient data object for algo-
rithms defined by user (orchestrator) for entire appli-
cation.
Science Services (S): Science algorithms applied to the
fused data-Events, which are streamed to all available
nodes and multi-threaded to all available cores in each
node.
Data Streaming to Cloud/Cluster : Process scaling is
achieved by data-Events streaming to multi-CPU sys-
tem, computing Cloud or traditional Cluster.

EB

Processing node 1

Process and Stats Orchestrator

data-Event
queue

Data Predictor

Request for next data-Event
Data

Persistence

Stats queue (e.g. Histograms)
FE
Web

S1 S1
Science

SS
Stats

RS
WS

Stats
Persistence

Figure 4: The NAIADS’s workflow on one node: multi

instrument observations data are streamed from the

Event Builder (EB), science algorithms (S1) are multi-

core scaled, Data Statistics is produced (SS) and can be

returned to user’s on-line interface. Output results are

persisted (WS).

An example of NAIAD’s workflow on one node is
shown in Figure 4. The data IO and event build-
ing are decoupled from process scaling on compute
Cloud, and controlled by dedicated Orchestrators.
The Event Builder (EB) fills in-memory data-Event
queue, Reader Service (RS) sends data envelope to
a Science algorithm (S1), which passes the processed
data to the Writer Service (WS), which stores the sci-
ence output in a specified way. The S1 services are au-
tomatically scaled within each node of compute Cloud.
This example also includes passing output of Science
algorithm to Statistical Service (SS), and then stream-
ing results (e.g. histograms) into statistics in-memory
queue, which can be displayed via Front End (FE) web
user interface or stored on disk.

The NAIADS transient message format (NcTransient)
has been enhanced and more thoroughly integrated
into the NAIADS prototype. NcTransient is based on
the experimental NetCDF ncstream library, which de-
fines an on-the-wire format for common data model
(CDM) datasets. We started with ncstream, fixed

1884

bugs that prevented it from working with our datasets,
and optimized it to handle our primary use case: fast
serialization and de-serialization of CDM datasets to
and from CLARA message payloads.

The NcTransient protocol was enhanced to be both
write and read optimized. For read optimization,
we only de-serialize variable data if the client actu-
ally reads it. We also store large variables in multi-
ple “chunks” which may further limit de-serialization.
For write optimization, NcTransient allows datasets
or variables to be marked as read-only. This enables
us to replace slow serialization with a fast byte array
copy from existing de-serialization buffers.

IV. Data Test Case

Data fusion of SCIAMACHY Level-1 observations,
MODIS/Terra Level-2 (Cloud, Aerosol, and Land)
data products, and ECMWF re-analysis data is used
for NAIADS demonstration and performance tests in
compute Cloud and Cluster environment.

1 DAC01, February - April, 2015

AIST-14-0014: NAIADS

GL1

GL2

GL3

GL4

GL5

SCIAMACHY FOOTPRINT 30 x 230 km Wavelength (nm)

N
.B

. R
ef

le
ct

an
ce

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

200 400 600 800 1000 1200 1400 1600 1800

Nadir Reflectance over Evergreen Forest and STD

Figure 5: The Level-1 SCIAMACHY hyperspectral

data for the test case 1: size and 5 geolocation

points of near-nadir SCIAMACHY footprint (left), and

SCIAMACHY-derived spectral reflectance over ever-

green forest and its STD (right).

Essential features of the SCIAMACHY Level 1 nadir
spectral data are illustrated in Figure 5:
� Nine years of near-nadir measurements;
� From 10 AM Sun-synch orbit;
� Swath 950 km (4 footprints in cross track);
� Footprint size 30 km by 230 km;
� 5 geo-location points per footprint;
� SCIAMACHY Level-1 data volume 2.2 TB.

We implemented test case 1 – merging the data from
SCIAMACHY Level-1 data product and IGBP surface
index. The IGBP surface index represent an auxiliary
information provided in a static geo-grid with (1/6)◦

resolution. Data volume is 7 MB.

V. NAIADS Performance Tests

We have performed extensive test using Amazon Web
Services (AWS) Cloud. The NAIADS AWS Cloud
configurations included up to 16 compute nodes with
32 cores (c4.8xlarge compute optimized instances) and
data stored at the WAS S3 bucket. The test data was
staged on each node’s local SSD storage.

A. Python Implementation: We began our hands-
on evaluation with pCLARA, the Python implemen-
tation of the CLARA framework. Python is not an
aggressively performant language by design and ini-
tial evaluations showed that pCLARA with the stan-
dard Cython interpreter lagged far behind the per-
formance of a traditional C++ implementation. In
an effort to match the performance of the traditional
C++ implementation, a survey was performed of vari-
ous higher performance Python dialects. Cython com-
piles Python code to C++ modules that are callable
directly from Python, which results in a performance
boost of about 30%. Alternatively, Cython can be
used to allow Python to call external C++ code more
or less directly, which makes the Cython solution as
performant as the C++ code that it is calling, with
the caveat that overhead is added whenever Python
data types are converted to C++ data types and back.
PyPy, a just in time interpreter, was also evaluated
and was shown to have very encouraging performance,
but was not evaluated with pClara because it does not
appear to support all of the necessary libraries at this
time. The Cython and Cython wrapping C++ imple-
mentations were ported back to pCLARA and were
benchmarked.

Figure 6: NAIADS performance with pCLARA easily

outperforms a traditional Python solution and can be

coerced to approach the performance of a traditional

C++ solution.

The results, illustrated in Figure 6, show that
pCLARA can easily out perform well optimized
Python, and can come very close to the performance
of C++. It is worth noting that portability is not an
issue with any of the above options as they will run
anywhere that Python and pCLARA will run, with
the only understanding that Cython scripts need to
be compiled natively before being run on different ma-
chines. For performance driven reasons, we will halt
our evaluation of pCLARA as a computation frame-
work and will reserve its use for code that does have
strict time constraints, such as asynchronous monitor-
ing and graphing.

1885

B. Java Implementation: NAIADS/CLARA sys-
tem has shown very good linear scalability. Every
node process a file isolated from the others, and the
network communication is only control messages be-
tween the orchestrator and the DPEs. Since the or-
chestrator has been optimized to communicate with
nodes in parallel, the overhead of using many nodes to
run files in parallel is minimum. The Figure 7 shows
the linear scalability when using up to 16 nodes to
process the same set of files.

Figure 7: NAIADS’ linear scalability when using up to

16 nodes for processing. Each node has 12 cores.

VI. Conclusions

We develop a conceptually novel framework for the
Earth Science big data fusion. The NASA Information
And Data System (NAIADS) software is integrated
with CLARA framework and messaging based on the
ØMQ socket library. The team has implemented the
1st data test case based on SCIAMACHY Level-1 hy-
perspectral data and IGBP Map. The NAIADS sci-
ence algorithms have been implemented as framework
services: data reading, data-event building, quality
control, spectral re-sampling, and product sorting and
persistence on disk storage. The implementation was
tested with a number of Python dialects and Java.
The NAIADS transient data format, NetCDF stream-
ing, and IO services for NetCDF and HDF file for-
mats were developed. Initial tests demonstrated linear
multi-note and multi-core scaling. The Cloud config-
urations for performance benchmarking are designed,
tested, and the process is automated.

Acknowledgement

We used SCIAMACHY Level-1 data, distributed by
the European Space Agency. The NAIADS project is
funded by the NASA ROSES 2014 – ESTO Advanced
Information Systems Technology program.

References

[1] Wielicki, B. A., B. R. Barkstrom, E. F. Harrison,
R. B. Lee, G. L. Smith, and J. E. Cooper, “Clouds
and the earth’s radiant energy system (CERES): An
earth observing system experiment,” Bulletin of the
American Meteorological Society, 77(5), pp. 853 – 868,
1996.

[2] Loeb, N.G., W. Sun, W.F. Miller, K. Louka-
chine, and R. Davies: “Fusion of CERES, MISR and
MODIS measurements for top-of-atmosphere radia-
tive flux validation”, J. of Geophys. Research, 111,
D18209, doi:10.1029/2006JD007146, 2006.

[3] Loeb, N.G., B.A. Wielicki, W. Su, K. Loukachine,
W. Sun, T. Wong, K.J. Priestley, G. Matthews, W.F.
Miller, and R. Davies: “Multi-instrument comparison
of top-of-atmosphere reflected solar radiation”, J. of
Climate, v. 20, No. 3, 575-591, 2007.

[4] Kato, S., S. Sun-Mack, W.F. Miller, F. Rose, Y.
Chen, P. Minnis, and B.A. Wielicki, “Relationships
among cloud occurrence frequency, overlap, and ef-
fective thickness derived from CALIPSO and Cloud-
Sat merged cloud vertical profiles,” J. of Geophysical
Research, v. 15, D00H28, doi:10.1029/2009JD012277,
2010.

[5] Thomas, E., “SOA: Principles of Service Design,”
Prentice Hall, ISBN: 0-13-234482-3, 2007.

[6] Hintjens, Peter, “ZeroMQ: Messaging for Many
Applications,” O’Reilly Media, pp. 484, March
2013.

[7] ØMQ Home Page, 2015, iMatix:
http://zeromq.org

[8] Gyurjyan, V., D. Abbott, J. Carbonneau, G. Gil-
foyle, D. Heddle, G. Heyes, S. Paul, C. Timmer, D.
Weygand, E. Wolin, “CLARA: A Contemporary Ap-
proach to Physics Data Processing,” J. of Physics:
International Conference on Computing in High En-
ergy and Nuclear Physics, Conference Series 331,
doi:10.1088/1742-6596/331/3/032013, 2011.

[9] CLARA Framework Home Page at Jefferson Lab:
https://claraweb.jlab.org

1886

