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Abstract—Geoscience gives insights into our surroundings
and benefits many aspects of our life. Nowadays, with massive
sensors deployed to sense all kinds of parameters for envi-
ronments, tens of billions, even trillions of sensed data are
collected and need to be analyzed for surveillance or other
purposes. From many perspectives, users always issue queries
according to specific spatial and temporal predicates. For these
applications, relational databases are overwhelmed by the large
scale and high rate insertions, and NoSQL database could be
considered a feasible solution. HBase, a popular key-value store
system, is capable to solve the storage problem, but fails to
provide in-built spatio-temporal querying capability.

Many previous works tackle the problem by designing
schema, i.e., designing row key and column key formation for
HBase, which we don’t believe is an effective solution. In this
paper, we address this problem from nature level of HBase,
and propose an index structure as a built-in component for
HBase. STEHIX (Spatio-TEmporal Hbase IndeX) is adapted
to two-level architecture of HBase and suitable for HBase to
process spatio-temporal queries. It is composed of index in
the meta table (the first level) and region index (the second
level) for indexing inner structure of HBase regions. Base
on this structure, two common queries, range query and
kNN query are solved by proposing algorithms, respectively.
For achieving load balancing and scalable kNN query, two
optimizations are also presented. We implement STEHIX and
conduct experiments on real dataset, and the results show our
design outperforms a previous work in many aspects.

Keywords-spatio-temporal query; HBase; range query; kNN
query; load balancing

I. INTRODUCTION

With development of Geoscience, especially in Global
Positioning System (GPS) and Remote Sensing (RS), the
volume of spatio-temporal data accumulated to TB, even PB
or EB. After storing spatio-temporal data, users always have
requests of querying data by specific spatial and temporal
predicate, which requires efficient storage and retrieval capa-
bility. Traditional database management systems (DBMSs)
have advantage of data organization and are equipped with
multi-dimensional index structures. However, dealing with
large scale of data, they are incapable in high rate insertion
and real time query. On the other hand, HBase [1], a key-
value store system, can effectively support large scale data
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operations, but do not natively support multi-attribute index,
which limits the rich query applications.

A. Motivation

Our motivation is to adapt HBase to efficiently process
spatio-temporal queries. Although some previous works pro-
posed distributed index on HBase, but these works only
consider spatial dimension, more critically, most of these
works only concern how to design schema for spatial data,
which do not tackle the problem from the nature level of
HBase, except one, MD-HBase [2] is designed to add index
structure into the meta table, however, it doesn’t provide
index to efficiently retrieve the inner data of HBase regions.
Our solution, STEHIX (Spatio-TEmporal Hbase IndeX), is
built on two-level lookup mechanism, which is based on
the retrieval mechanism of HBase. First, we use Hilbert
curve to linearize geo-locations and store the converted one-
dimensional data in the meta table, and for each region,
we build a region index indexing the StoreFiles in HBase
regions. We focus on range queries and kNN queries for
such environment in this paper.

B. Contributions

We address how to efficiently answer range and k nearest
neighbor (kNN) queries on spatio-temporal data in HBase.
Our solution is called STEHIX (Spatio-TEmporal Hbase
IndeX), which fully takes inner structure of HBase into
consideration. The previous works focus on building index
based on the traditional index, such as R-tree, B-tree, while
our method constructs index based on HBase itself, thus, our
index structure is more suitable for HBase retrieval. In other
way, STEHIX considers not only spatial dimension, but also
temporal one, which is more in line with user demand.

We use Hilbert curve to partition space as the initial
resolution, the encoded value of which is used in the meta
table to index HBase regions, then we use quad-tree to
partition Hilbert cells as the finer resolution, based on this,
we design region index structure for each region, which
contains the finer encoded values for indexing spatial dimen-
sion and time segments for indexing temporal dimension.
And later, we show such two-level index structure, meta
table + region index, is more suitable for HBase to process
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query in the experiment. Based on our index structure,
algorithms for range query and kNN query are devised, and
load balancing policy and optimization to KNN query are
also presented to raise STEHIX performance. We compare
STEHIX with MD-HBase on real dataset, and the results
show our design philosophies make STEHIX to be more
excellent than the counterpart. In summary, we make the
following contributions:

o We propose STEHIX structure which fully follow inner
mechanism of HBase and is a new attempt on building
index for spatio-temporal data in HBase platform.

o We propose efficient algorithms for processing range
and kNN queries in HBase.

o We carry out comprehensive experiments to verify the
efficiency and scalability of STEHIX.

The rest of this paper is organized as follows. Section
2 reviews related works. Section 3 formally defines the
problem and prerequisites. Section 4 presents STEHIX struc-
ture. In section 5, algorithms for range and kNN queries
are presented. Section 6 reports the optimizations to the
index. And we experimentally evaluate STEHIX in section
7. Finally, section 8 concludes the paper with directions for
future works.

II. RELATED WORKS

As an attractive alternative for large-scale data processing,
Cloud storage system currently adopts a hash-like approach
to retrieve data that only support simple keyword-based
queries, but lacks various forms of information search. For
data processing operations, several cloud data managements
(CDMs), such as HBase, are developed. HBase, as NoSQL
databases, is capable to handle large scale storage and high
insertion rate, however, it does not offer much support for
rich index functions. Many works focus on this point and
propose various approaches.

Nishimura et al. [2] address multidimensional queries
for PaaS by proposing MD-HBase. It uses k-d-trees and
quad-trees to partition space and adopts Z-curve to convert
multidimensional data to a single dimension, and supports
multi-dimensional range and nearest neighbor queries, which
leverages a multi-dimensional index structure layered over
HBase. However, MD-HBase builds index in the meta table,
which does not index inner structure of regions, so that scan
operations are carried out to find results, which reduces its
efficiency.

Hsu et al. [3] propose a novel Key formulation scheme
based on RT-tree, called KR -tree, and based on it, spatial
query algorithm of kNN query and range query are designed.
Moreover, the proposed key formulation schemes are imple-
mented on HBase and Cassandra. With the experiment on
real spatial data, it demonstrates that KR -tree outperforms
MD-HBase. KR -tree is able to balance the number of false-
positive and the number of sub-queries so that it improves
the efficiency of range query and kNN query a lot. This

work designs the index according to the features found in
experiments on HBase and Cassandra. However, it still does
not consider the inner structure of HBase.

Zhou et al. [4] propose an efficient distributed multi-
dimensional index (EDMI), which contains two layers: the
global layer divides the space into many subspaces adopting
k-d-tree, and in the local layer, each subspace is associated
to a Z-order prefix R-tree (ZPR-tree). ZPR-tree can avoid the
overlap of MBRs and obtain better query performance than
other Packed R-trees and R*-tree. This paper experimentally
evaluates EDMI based on HBase for point, range and kNN
query, which verifies its superiority. Compared with MD-
HBase, EDMI uses ZPR-tree in the bottom layer, while MD-
HBase employs scan operation, so that EDMI provides a
better performance.

Han et al. [5] propose HGrid data model for HBase. HGrid
data model is based on a hybrid index structure, combining
a quad-tree and a regular grid as primary and secondary
indices, supports efficient performance for range and kNN
queries. This paper also formulates a set of guidelines on
how to organize data for geo-spatial applications in HBase.
This model does not outperform all its competitors in terms
of query response time. However, it requires less space than
the corresponding quad-tree and regular-grid indices.

HBaseSpatial, a scalable spatial data storage based on
HBase, proposed by Zhang et al. [6]. Compared with
MongoDB and MySQL , experimental results show it can
effectively enhance the query efficiency of big spatial data
and provide a good solution for storage. But this model does
not compare with other distributed index method.

All the previous works we have mentioned above only
consider the spatial query. For moving objects, a certain
type of geo-spatial applications, requires high update rate
and efficient real-time query on multi-attributes such as time-
period and arbitrary spatial dimension. Du et al. [7] present
hybrid index structure based on HBase, using R-tree for
indexing space and applying Hilbert curve for traversing
approaching space. It supports efficient multi-dimensional
range queries and kNN queries, especially it is adept at
skewing data compared with MD-HBase and KR "-tree. As
this work focus on moving objects, it is different for our
goal, and it also does not take the inner structure of HBase
into account.

III. PROBLEM DEFINITION AND PREREQUISITES

In this section, we first formally describe spatio-temporal
data, and then present the structure of HBase storage. For
simplicity, only two-dimensional space is considered in this
paper, however, our method can be directly extended into
higher dimensional space.

A record r of spatio-temporal data can be denoted as (x,
y, t, A), where (z, y) means the geo-location of the record, ¢
means the valid time when the data is produced, A represents
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other attributes, such as user-id, object’s shape, descriptions,
and etc.

We give the descriptions for structure of storage and index
in HBase [8][9], for simplicity, some unrelated components,
such as HLog and version, are omitted. Usually, an HBase
cluster is composed of at least one administrative server,
called Master, and several other servers holding data, called
RegionServers.

Logically, a table in HBase is similar to a grid, where a
cell can be located by the given row identifier and column
identifier. Row identifiers are implemented by row keys (rk),
and the column identifier is represented by column family
(¢f) + column qualifier (cq), where a column family consists
of several column qualifiers. The value in a cell can be
referred to as the format (rk, cf:cq). Table I shows a logical
view of a table in HBase. For instance, value v; can be
referred to as (rky, cfi:cqr).

(rk1,cfl:cql,valuel)
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server|

regoinA

MemStore
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regoin ...

serverll
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StoreFile
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Physically, a table in HBase is horizontally partitioned
along rows into several regions, each of which is maintained
by exactly one RegionServer. The client directly interacts
with the respective RegionServer when executing read or
write operations. When the data, formally as (rk, cf:cq,
value) (we alternatively use term key-value data in rest
of the paper), are written into a region, the RegionServer
first keeps the data in a list-like memory structure called
MemStore, where each entry is pre-configured with the same
fixed size (usually 64KB) and the size of a certain number of
entries is equal to that of the block of the underlying storage
system, such as HDFS. When the size of MemStore exceeds
a pre-configured number, the whole MemStore is written into
the underlying system as a StoreFile, the structure of which
is similar to that of MemStore. Further, when the number
of StoreFiles exceeds a certain number, the RegionServer
will execute the compaction operation to merge StoreFiles
into a new large one. HBase provides a two-level lookup
mechanism to locate the value corresponding to the key
(rk, cf:cq). The catalog table meta stores the relation {[table
name]:[start row key]:[region id]:[region server]}, thus given
arow key, the corresponding RegionServer can be found, and
then the RegionServer searches the value locally according
to the given key (rk, cf:cq). Figure 1 shows an example of
HBase two-level lookup structure.

From above descriptions, we can see that HBase only
provides a simple hierarchical index structure based on the
meta table, and the corresponding RegionServer must do
scan work to refine the results, which would be inefficient

Figure 1. HBase Two-Level Lookup

to handle spatio-temporal queries.

IV. STEHIX STRUCTURE

In this section, we present the structure of our index,
STEHIX (Spatio-TEmporal Hbase IndeX). The following
philosophies are considered during index design, 1) for
applications, it is not necessary for users to dedicatedly to
design schema for query spatio-temporal data, i.e., our index
should add no restriction on schema design, but a inner
structure associated with HBase, 2) the index should be in
accordance with the architecture of HBase as identical as
possible, 3) the index should be adaptive to data distribution.

For design rule 1), we don’t care the schema design and
generalize each record to be a key-value data in Store-
File(MemStore), formally (rk, cf:cq, r), where r=(x, y, t,
A).

For design rule 2), our index is built on the two-level
lookup mechanism. In particular, we use Hilbert curve to lin-
earize geo-locations and store the converted one-dimensional
data in the meta table, and for each region, we build a region
index to index the StoreFiles. Figure 2 shows an overview
of STEHIX architecture.

A. Meta Table Organization

We use Hilbert curve to partition the whole space as
the initial granularity. According to the design rationale
of HBase, the prefix of row key should be different so
that the overhead of inserting data could be distributed
over RegionServers. And such design is able to satisfy this
demand.
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Figure 2. Overview of STEHIX

Hilbert curve is a kind of space filling curve which
maps multi-dimensional space into one-dimensional space.
In particular, the whole space is partitioned into equal-
size cells and then a curve is passed through each cell
for only once in term of some sequence, so that every
cell is assigned a sequence number. Different space filling
curves are distinguished by different sequencing methods.
Due to information loss in the transformation, different space
filling curves are evaluated by the criteria, locality preser-
vation, meaning that how much the change of proximities
is from original space to one-dimensional space. Hilbert
curve is proved to be the best locality preserved space filling
curve [10]. With Hilbert curve, any object in the original
space is transformed into [0, 22X _ 1] space, where \ is
called the order of Hilbert curve. Figure 3 shows four Hilbert
curves in two-dimensional space with A=1, 2, 3 and 4.

We describe three functions for Hilbert curve, first one
is mapping a point in the original space to a value in one-
dimensional space, the second is mapping a range window to
a series of intervals, and the third is retrieving proximity cells
of a point. Specifically, for a Hilbert curve with order=\,

e coorToCell(p). Given a point p=(z1, 2, ..., &) in
n-dimensional space S, coorToCell(p) returns a cell
number (between 0 and 22* — 1) referring the cell where
p lies within S.

e rectTolntervals(R). Given a range window R=(z},
:Elz, :ciL xy, x§, ..., x¥) in n-dimensional space
S, where xﬁ and zi' (1 < ¢ < n) are the lower
and upper bound of the ¢th-dimension, respectively,
rectTolntervals(R) returns a series of intervals rep-
resenting the cells intersecting with R in S.

e getNeighborCells(p). Given a point p=(x1, 2, ...,

Z,) in n-dimensional space S, getNeighborCells(p)
returns a list of cell numbers referring the cells which
are neighbors of the cell coorToCell(p).

For instance, in Figure 3 (b), coorToCell(p1) = 2,
coorToCell(ps) = 13, rectTolntervals(Ry) = {[1,2],
[7.81, [11,15]}, and get NeighborCells(pa)={1, 2, 7, 8, 11,
12, 15, 14}.

Based on above descriptions, we use Hilbert cell value
as row key in the meta table to index spatio-temporal data
as first level, thus, each record can be placed into the
corresponding region according to Hilbert value of spatial
part of the record. In particular, the following mapping
structure is built in the meta table (for simplicity, table name
is omitted): {[start Hilbert cell, end Hilbert cell]:[region
id]:[region server]}. Initially, assuming there are N regions
across M RegionServers, we can uniformly assign Hilbert
cells to these regions, for instance, the first entry could be
{10, ((2** —1)/N) — 1] : regionA : serverI}, and the
second {[((22* —1)/N), (2% (22 —1)/N) — 1] : regionB
s serverll}.

B. Region Index Structure

For retrieving local data efficiently, we design the region
index which is kept in memory like MemStore. Considering
MemStore is always kept in memory, region index is only to
index StoreFile, however, for answering a query, MemStore
must be scanned to guarantee the completeness of results.

Region index is a list-like in-memory structure, each entry
of which points to a list of addresses referring to key-value
data in the StoreFile. The region index consists of two parts,
one is called s-index indexing spatial component of data, the
other is called t-index indexing the temporal part, and such
design is able to benefit query efficiency as we will see in
next section.

For constructing s-index, the space is further partitioned
at a finer granularity, i.e., each Hilbert cell is recursively
divided by quad-tree and the resulting tiles are encoded with
binary Z-Order. Such consideration is able to deal with the
skewed data, i.e., when a hotspot is detected, quad-tree can
be used recursively until the hotspot is eliminated. Later, we
will use this idea to design an adaptive load balancing policy.
After partitioning the Hilbert cell, each tile is corresponding
to an entry in the s-index, i.e., the entry points to the key-
value data whose geo-locations lie in that tile. For instance,
Figure 4 shows an example of meta table and region index,
where in the meta table, Hilbert cells [0, 1] indexes region A
: serverl and [2, 3] for regionB : serverll, respectively.
For region A, Hilbert cells 0 and 1 are divided using quad-
tree into 11 tiles, 7 of which are 2-bit tiles and 4 are 4-
bit tiles, and for each entry in s-index, the identifier is a
combination of Hilbert value and binary Z-Order value, for
instance, entry 0-10, where O is the number of Hilbert cell 0
and 10 is the code of lower-right tile in Hilbert cell 0, points
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Figure 3. Hilbert Curves

to a list containing two addresses referring to two key-value
records in StoreFile.

For building f-index, we use a period T' to bound the
length of the list of t-index, and such consideration is based
on the fact that there may be some cycle for the spatial
change of objects. The period 7' is divided into several
segments, each of which is corresponding to an entry in
t-index. Each entry points to a list of addresses referring
to key-value data in StoreFile, whose temporal component
modulo 7" lies in the segment. Continuing the example,
Figure 4 shows the structure of t-index. Let T=24, which
means a period of 24 hours is a cycle, and let each segment
= 3 hours, which means 7" is divided into 8 segments, and
entry [3, 6) points to 8 key-value data whose temporal value
modulo 24 between 3 and 6.

meta

[0, 1], region A->serverl

[2, 3], region B->serverll

[ b
00 : 10 pe-te-d 10

=
I

or | g o | 1
=

server| v

regoin A

~
StoreFile

Figure 4. Region Index Structure

V. QUERY PROCESSING

In this section, the processing algorithms for range queries
and £NN queries are presented.

A. Range Query

A range query q=(i, Yi, Tu, Yu, ts, te), aims to find all
the records, whose geo-locations lie in the range (x;, yi, Zq,
Yy,) during time [ts, te].

The basic work flow for processing a range query ¢
is described as follows, first, using Hilbert curve, spatial
predicate (x;, y;, Ty, Yu) 1S converted into a set of one-
dimensional intervals I, then according to mapping relation
in the meta table, the involved RegionServers are informed to
search the corresponding regions locally, utilized by region
index. Here we propose a query optimization, i.e., using s-
index and t-index to calculate selectivity, which is helpful
to choose the high-selectivity to filter more unrelated data,
in particular, the spatial predicate is recursively divided
by quad-tree, the results of which are intersected with the
entries in s-index, and then the number of addresses to key-
value data can be calculated, say sn, similarly, using #-index
can also calculate a number, tn, then if sn is less than tn,
s-index is followed to retrieve results, other wise t-index is
used.

Algorithm 1 describes the range query processing for
STEHIX. In line 1, the spatial predicate is converted into
one-dimensional intervals I, and the temporal predicate is
converted into [0, 7'] interval in line 2. In line 3, function
findRegions() finds the involved regions which intersect
with I;. From line 4 to 11, each corresponding region index
is inspected to retrieve results, in particular, s-index and ¢-
index is used to calculate selectivity for the query, which is
implemented by function getC'ard(), and the index with the
lower cardinality is chosen to retrieve the results.

Figure 4 shows an example for range query processing in
STEHIX. The spatial bound of ¢ is depicted with dashed line
and we assume that temporal predicate of g is [3, 6]. Then
Hilbert cells 0 and 1 are intersected with ¢, thus, two entries
in the meta table are examined, namely, {[0, 1] : regionA :
serverl} and {[2, 3] : regionB : serverII}. For instance,
in region A, the entries in s-index are intersected with spatial

1872



Algorithm 1 Range Query Processing
Input:
q=($la Yis Ty Yu, bss te)
Qutput:
Qlist  [/result list
1: I, = rectTolntervals(xy, Y1, Tus Yu)
2: keys =ts mod T, key.=1t. mod T
3: Regions=findRegions(I,)
/*the following processing is executed separately in each
region®/
4: for each region € Regions do
5 sn=region.s-index.getCard(x;, yi, T, Yy)
6:  tn=region.t-index.getCard(keys, key.)
7
8
9

if sn < tn then
Qlist«region.s-index.seachIndex(q)

: else
10: Qlist<region.t-index.seachIndex(q)
11:  end if
12: end for

13: return Qlist

predicare of ¢, resulting 0-10, 0-11, 1-0001, 1-0011, 1-01
these 5 entries, which refer to totally 7 addresses to key-
value data, and similarly, entry [3, 6) of t-index refers to 8
addresses, consequently s-index is followed to retrieve the
results.

B. kNN Query

A kNN query could be formally defined as: given a set R
of spatio-temporal data records, a kNN query ¢=(x4, Yq. ts,
te, k), aims to find a set R(¢) € R, such that |R(q)|=k, and
d(o, (24,y)) < d(0', (2, yq)). Yo € R(g). o € R\ R(q).
and o.t, o't €[ts, t.], where d() is the Euclidean distance
function.

We don’t want to use n range queries to accomplish
the kNN query, which means continuously enlarging spatial
range of the query until k£ records are obtained [11], because
we believe such a method would cause heavy querying
overhead. We propose an approach utilized by incremental
retrieval idea [12]. The basic work flow is, proximity objects
of point (x4, y,) are constantly, incrementally retrieved
until & results are found. In particular, first, Hilbert cell h
containing point (4, ¥4) is located, then the corresponding
region index is utilized to retrieve all records lie in h,
meanwhile, neighbor cells of h are also retrieved, and these
records and Hilbert cells are all enqueued into a priority
queue where priority metric is the distance from (z4, y,)
to record or Hilbert cell. Then top element is constantly
dequeued and processed, either being added to result list or
being followed to retrieve neighbor cells to be enqueued,
until % results are found.

Algorithm 2 presents kNN query processing. The first
line initializes a priority queue P@Q where each element

is ordered by the distance from (x4, 74) to the element.
The element can be Hilbert cell or record, and if it is a
Hilbert cell, the distance is M INDIST [13], other wise,
the distance is the Euclidean distance from (x4, y,) to geo-
location of the record. In line 2, the Hilbert cell containing
(x4, yq) is gained, and is enqueued in line 3. From line 4, the
procedure constantly retrieves top element e from P (line
5) and processes it, in particular, if e is a Hilbert cell (line 6),
find the corresponding region rg from the meta table (line
7), and then the corresponding region index is searched to
retrieve all the records satisfying temporal predicate (line 8),
which are enqueued into PQ (line 9 to 11), after that, the
neighbor cells of e are obtained and enqueued into PQ) (line
12 to 15); other wise, i.e., if e is a record (line 16), which
means e is a result, e is added into Qlist (line 17), and the
above procedure is looped until the size of Qlist reaches k
(line 18 to 20).

Algorithm 2 kNN Query Processing
Input:

q=(:vq, Yq> ts, te, k)
Output:

Qlist //result list

1: PQ=null //initial a priority queue

2: h=coorToCell(xq, yq)

3. PQ.enqueue(h, MINDIST (x4, yq), )
4: while PQ # ¢ do

5. e=PQ.dequeue()

6: if e is typeof cell then

7: rg=findRegions(e)

8: RS=rg.findRecords(e, (ts, te))

9: for each record € RS do

10: PQ.enqueue(record, dist((xq, yq), record))
11: end for

12: CellSet=get N eighborCells(e.center)
13: for each cell € CellSet do

14: PQ.enqueue(cell, MINDIST((xq, yq), cell))
15: end for

16:  else if e is typeof record then

17: Qlist+e

18: if Qlist.size()=k then

19: return Qlist
20: end if
21:  end if

22: end while

VI. OPTIMIZATIONS

In this section, we propose two methods for raising
performance of STEHIX from the aspects of load balancing
and query optimization.
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A. Adaptive Load Balancing

For achieving design rule 3), adaptive load balancing
is considered. Our spatial partition procedure contains two
phases, first is Hilbert curve, and the second is quad-tree.
And load balancing is based on the second phase and region
split, in particular, when the volume of a region exceeds a
limit due to the hotspot in spatial dimension, the procedure
detects which Hilbert cell is the hotspot, and uses a quad-
tree to divide it into four subspaces, thus the original region
is split into five regions, i.e., four corresponds to the four
subspaces and one corresponds to the undivided Hilbert
cell(s). After that, the meta table is also updated to renew
the mapping information as well as the region index. Figure
5 shows an example of region split. We can see when a
hotspot is generated in Hilbert cell 0, the cell is divided into
four subspaces by quad-tree, and the corresponding region
is split into five, namely, 0-00, 0-01, 0-10, 0-11 and 1, and
the meta table and new regions are updated accordingly.

01 a1

00 ’10

meta

meta 0-00, region R1->serverll

0-01, region R2->serverll

L

[0, 1], region A->serverl
0-10, region R3->serverX

iy

0-11, region R4->serverX

1, region A->serverl

Figure 5. Load Balancing

B. Optimization for kNN Query

From kNN algorithm we can see, each time for retrieving
the records of a Hilbert cell, the meta table must be searched
to locate the corresponding region, which would increase
overhead of the query. To deal with such a problem, we
add modifications to region index, in particular, each region
index ri is connected to the regions whose Hilbert cells
are the neighbors of ri’s region’s Hilbert cells. Thus, when
get NeighborCells() method is invoked, the current region
is able to retrieve records from proximity regions, however,

not all the records can be retrieved, and for this case, the
meta table should be searched. Nevertheless, this optimiza-
tion would reduce the overhead of querying the meta table.

VII. EXPERIMENTAL EVALUATION

We evaluate our algorithms on real dataset, which contains
trajectories of taxis in Beijing'. In particular, the dataset
contains about 100 million records, and temporal range is
from Nov. 1st to 3rd, and each record in the dataset contains
vehicle ID, geo-location, recording time stamp, etc.

Our algorithms are implemented in Hadoop 2.5.1 and
HBase 0.98.6, and run on a cluster with size varied from
5 to 33, in which each node is equipped with Intel(R)
Core(TM) i3 CPU @ 3.40GHz, 4GB main memory (for
Master 16GB), and 500GB storage, and operating system
is CentOS release 6.5 64bit, and network bandwidth is
10Mbps. For comparison, we choose MD-HBase due to the
similar function.

A. Range Queries

First, we evaluate the algorithm for range queries. And we
introduce two parameters to test the algorithm under various
conditions. One is selectivity ¢ defined as:

_ Loty Ar,
L As

where L, ;) means the length of query temporal range
(ts,te), L; means the length of temporal extent of the
dataset, Ar, means the area of query spatial range R, and
Ag means the area of the whole space. Selectivity specifies
the size of the query range, and the larger 6 is, the more
spatio-temporal records are involved. In this experiment,
the default values of € and cluster size are 10% and 9,
respectively. For each value of 6 or size, we issue 10
queries with different temporal ranges and spatial ranges,
and collect the average response time as the measurement
of performance.
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Figure 6. Experimental Results for Range Queries

First, we vary 6 from 3% to 50% and Figure 6(a) shows
the results. We can see that response time increases with

Uhttp://activity.datatang.com/20130830/description
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6 for both methods. This is because a larger selectivity
would access more records to be retrieved and examined,
which increases the processing time. However, we can see
STEHIX outperforms MD-HBase, which can be explained
by the design of region index. Although MD-HBase builds
index in the meta table, it doesn’t index inner structure
of regions, thus, scan operations are carried out to find
results, which cost heavily. Our STEHIX is adapted to the
two-level architecture of HBase, and is able to use region
index to efficiently search each region, which highly improve
performances.

Next, we vary cluster size from 5 to 33, and Figure 6(b)
shows the results. It is apparent that STEHIX is excellent due
to its nearly horizontal response time and good scalability.
When the number of cluster size is increased, more Re-
gionServers take part in the processing and use their region
indexes parallel. However, due to lack of indexing StoreFiles,
the scalability of MD-HBase is not good.

B. kNN Queries

In this experiment, the default values of k and cluster
size are 8 and 9, respectively. First, we vary k from 4 to
32, and Figure 7(a) shows that STEHIX outperforms MD-
HBase. When £ is increased, both methods need more time
to process queries. STEHIX uses less time to retrieve k
results, which can be explained by the same reason, i.e., the
region index embedded in HBase region. And then cluster
size is varied from 5 to 33, still, STEHIX is better than
MD-HBase, Figure 7(b) shows the fact.

3000 7 T
—a— STEHIX
--0-- MD-HBase

T T
3000 —#— STEHIX

--0-- MD-HBase

2500 25004

20004 2000

o
2
38

1500 4

Delay(ms)
Delay(ms)

5
8
s

1000

@
2
38

o

500 T
33
Cluster size

(a) Effect of k (b) Effect of cluster size

Figure 7. Experimental Results for kNN Queries

C. Effect of Optimizations

We examine the effect of optimizations to STEHIX in
this experiment, and Figure 8 show the results. First, we
use maximum imbalance load ratio [14] as metric, and test
our adaptive load balancing policy, the results of comparison
with non-load balancing are plotted in Figure 8 (a). We can
see with cluster size increased, both ratios are raised, this is
because the more nodes participate in the cluster, the more
difficult is to distribute load uniformly, however, we can see
our load balancing method indeed takes effect, i.e., when
load balancing policy is used, the ratio is averagely around 6,
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while the counterpart shows the performance about 38 to 70.
Next, we test the effect of kNN optimization, from Figure 8
(b), we can see the connections among region indexes give
chances to reduce querying overhead.
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Figure 8. Experimental Results for Optimizations

VIII. CONCLUSION

With development of Geoscience, more and more spatio-
temporal data need to be processed. To equip HBase with
efficient and scalable spatio-temporal querying capability is
a hot study field for big data area. Many previous works fail
to tackle this problem due to lack of deep design for HBase.
In this paper, we address the problem by proposing a novel
index structure adapted to two-level architecture of HBase,
which is suitable for HBase to process queries. Algorithms
for range query and kNN query are designed, what’s more,
the optimizations for load balancing and kNN query are also
proposed. We carry out extensive experimental studies for
verifying our index, and the results show that our approach
for HBase is more efficient and scalable than the previous
work.

In the future, we plan to utilize this idea to efficiently
store and retrieve graph data and apply to social networks.

ACKNOWLEDGMENT

This work is supported by NSF of China grant 61303062.
We would like to thank Peijun He for helping with the
implementation.

REFERENCES

[1] H. Wiki, “Hbase: bigtable-like structured storage for hadoop
hdfs.”

S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, “Md-
hbase: a scalable multi-dimensional data infrastructure for lo-
cation aware services,” in Mobile Data Management (MDM),
2011 12th IEEE International Conference on, vol. 1. 1EEE,
2011, pp. 7-16.

Y.-T. Hsu, Y.-C. Pan, L.-Y. Wei, W.-C. Peng, and W.-C. Lee,
“Key formulation schemes for spatial index in cloud data
managements,” in Mobile Data Management (MDM), 2012
IEEE 13th International Conference on. 1EEE, 2012, pp.
21-26.

(2]

(3]



(4]

(3]

(6]

(7]

(8]

(9]
(10]

(1]

[12]

[13]

[14]

X. Zhou, X. Zhang, Y. Wang, R. Li, and S. Wang, “Efficient
distributed multi-dimensional index for big data manage-
ment,” in Web-Age Information Management. Springer, 2013,
pp. 130-141.

D. Han and E. Stroulia, “Hgrid: A data model for large
geospatial data sets in hbase,” in Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference on. 1EEE, 2013,
pp. 910-917.

N. Zhang, G. Zheng, H. Chen, J. Chen, and X. Chen, “Hbas-
espatial: A scalable spatial data storage based on hbase,” in
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2014 IEEE 13th International Conference
on. 1EEE, 2014, pp. 644-651.

N. Du, J. Zhan, M. Zhao, D. Xiao, and Y. Xie, “Spatio-
temporal data index model of moving objects on fixed
networks using hbase,” in Computational Intelligence &
Communication Technology (CICT), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 247-251.

A.  HBase, “Apache  hbase  reference  guide,”
Webpage available at http://wiki. apache.
org/hadoop/Hbase/HbaseArchitecture. ~ Webpage  visited,
pp. 04-04, 2012.

L. George, HBase: the definitive guide. ~ O’Reilly Media,
Inc.”, 2011.

C. Faloutsos and S. Roseman, “Fractals for secondary key re-
trieval,” in Proceedings of the eighth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems.
ACM, 1989, pp. 247-252.

J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing
multi-dimensional data in a cloud system,” in Proceedings
of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 591-602.

G. R. Hjaltason and H. Samet, “Distance browsing in spatial
databases,” ACM Transactions on Database Systems (TODS),
vol. 24, no. 2, pp. 265-318, 1999.

N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor
queries,” in ACM sigmod record, vol. 24, no. 2. ACM, 1995,
pp. 71-79.

Q. H. Vu, B. C. Ooi, M. Rinard, and K.-L. Tan, “Histogram-
based global load balancing in structured peer-to-peer sys-
tems,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 21, no. 4, pp. 595-608, 2009.

1876



